
COPYRIGHT AND
OPEN SOURCE

SOFTWARE LICENSING

By

Chang Sau Sheong

2

ABSTRACT

Copyright and Open Source Software Licensing

By Chang Sau Sheong

The open source software movement has swept the software industry by storm in
recent times, challenging many pre-conceptions about existing software
development and licensing models. Copyright have protected software ownership
and licensing of much of the closed source software in the market but how does
copyright relate to open source software licensing? This dissertation describes
the past and present of legal software protection and traces the history of the
open source software movement from the Free Software Foundation and Open
Source Initiative to the current state of the industry. The various open source
licences are compared and explained. The discussion concludes with a discussion
on the legal enforceability of open source licences.

TABLE OF CONTENTS

Table of Contents.. 2
List of Tables.. 4
Introduction ... 5
Copyright and Legal protection of software .. 5

Historical perspectives in legal software protection .. 5
Copyright ... 6
Copying software ... 8
Reverse engineering and making adaptations of software13
Copyright laws in various countries..15
Copyright in the international context ...18

The Open Source Software Movement ..22
Open Source Licences...24
Open source licenses matrix ..33
Open source licenses popularity..34

Legal Enforceability of Open Source Licenses ...35
Open source licences – copyright licence or contract?.......................................35
Copyright law in open source licences...41
Cross-jurisdictional issues in open source licences..45

Conclusion..48
References...51

4

LIST OF TABLES

Table 1 - Free and open source licence rights matrix..33
Table 2 - Free and open source licence popularity in Sourceforge...........................34

5

INTRODUCTION

The open source software movement has caused a large ripple in the software
industry with its radical and seemingly counter-business licensing mechanism.
Open source protocols and software have traditionally dominated much of what
is known as the Internet, legacy from the days when the Internet was just a small
collection of inter-connected networks, playground to the emerging hacker
culture. This is clearly evident as most of the pre-dominant software used to
operate the Internet is open source related. However, the Internet has evolved
into a larger, more diverse and commercialized domain of big businesses and
inevitably these social sub-cultures clash and legal issues arise as a result. This
dissertation investigates the various aspects of open source software licensing,
and examines the relationship between legal software protection, the laws that
have been created to legislate software licensing, and open source software
licences. This dissertation also investigates the enforceability of open source
licences.

COPYRIGHT AND LEGAL PROTECTION OF SOFTWARE
H i s t o r i c a l p e r s p e c t i v e s i n l e g a l s o f t w a r e p r o t e c t i o n

Technology often advances faster than legal procedures that legislates the
technology, and legal software protection is a prime example. Legal software
protection falls under the umbrella category of intellectual property law, an area
of law that deals with the legal rights associated with property that is intangible.

Protection mechanisms that come under this category includes copyright, patents,
trademarks and others which are often not related to each other beyond being
under the same group of property rights. Along with software intellectual

6

property laws covers a wide range of non-tangible assets such as literary and
artistic works, designs, marks used by traders and even commercial goodwill.

Historically, the first form of intellectual property protection explicitly granted to
software was patent. Applied Data Research (ADR) was to be the first company
granted a software patent of commercial importance in 1968. However the
practice of patenting software stopped in the 1970s as the courts and patent
offices frowned on using patents to protect software. The European Patent
Convention (1973) went as far as to exclude software from patentability in
Europe.

At the same time, copyright gained gradual acceptance as the main means of legal
software protection. In 1978, the US National Commission on New
Technological Uses of Copyrighted Works (CONTU) recommended to apply
only copyright to software protection. The US eventually became the first
country to legislate software copyright protection in the Software Copyright Act
in 1980.

C o p y r i g h t

Copyright, is “the protection of works of artists and authors giving them
exclusive rights to publish their works or determine who may so publish”1. It is a
property right that protects certain types of works including original literary and
artistic works, films and sound recordings, and typographical arrangement of
published editions. Software is protected by copyright as a form of literary work.
In some literature, depending on the period it is mentioned and the context it is
mentioned in, software is also referred to as computer programs or computer

1 Barron’s Law Dictionary

7

software or the works. In this dissertation, all these terms are considered to mean
the same thing.

Although copyright law is not uniform globally (intellectual property rights are
territorial), there are common features that have been adopted as a result of
international treaties and agreements. These provide copyright owners a number
of rights relating to certain acts that be performed on the works protected by
copyright:

• The right to copy the work and to issue copies
• The right to rent or lend the work
• The right to perform, show or play the work in public
• The right to broadcast the work
• The right to make a derivation of work and do any of the above in

relation to such derivation

These are acts that are restricted by copyright, and anyone who does any of these
acts without the permission or licence of the copyright owner, infringes
copyright, barring any defensible exceptions.

In relation to software, the relevant rights restricted by copyright are mostly the
right to copy, the right to issue copies (distributing) and the right to derive other
works from the original work (adapting or modifying). However, copyright does
not control how software is used, only how it is copied, modified or distributed.
It is not the act of using the software but copying, distributing or adapting it that
causes copyright to be infringed.

Copyright was traditionally used to protect artistic, dramatic and literary works.
These are the expressions of the creativity and intellectual efforts of the authors.

8

Copyright was modified and adapted to be used for software, and was not even
the recommended means of legal protection by the World Intellectual Property
Organization (WIPO). In 1978, WIPO drafted a model law based on a sui generis
approach that is neither copyright nor patent, but was later abandoned in
preference for copyright.

However, copyright was never meant to protect concepts and ideas, which was
the domain of patent protection. As a result, two important issues that challenged
copyright as a means of legal software protection are: whether non-literal
elements of software such as interfaces or program structures are copyrightable,
and whether reverse engineering is permissible, neither of which were answerable
or meaningful in previously existing copyright laws.

C o p y i n g s o f t w a r e

Infringing copyright with literal copying

As with any other literary work, the copyright in software is infringed when a
copy of it or a substantial part of it is made without the copyright owner’s
permission. One of the early cases of UK software infringement in which the
software was copied was Total Information Processing Systems Ltd v Daman Ltd2. In
this case the court decided that because a part of the software did not provide
executable code, it was not a substantial part of the software and therefore
copyright was not infringed. This decision is flawed as the significance of any part
of the software should be determined by the functional importance of the
software and not if it is executable or not.

2 Total Information Processing Systems Ltd v Daman Ltd [1992] FSR 171

9

Fortunately this is not the currently accepted position in UK; in IBCOS Computers
Ltd v Barclays Mercantile Highland Finance Ltd 3 the court determined that even
though there might not be direct full copying of the software, there were enough
significant portions of the code that was copied to have deemed copyright to be
infringed.

Infringing copyright with non-literal copying
For software, copying is not restricted to literal copying. The non-literal copying
of software can also be recognized as copyright infringement. For example, notes
that are taken for the design of the software, or requirements specifications that
are written to define the functions of the software can and do take on separate
copyright on their own. Furthermore, if only literal copying is taken as
infringement, copyright would be easily circumvented with the simple cosmetic
alteration of variable names and function names. On the other hand, protecting
non-literal elements of software takes a different light if we consider that
copyright should not protect ideas and concepts and it gives too much
monopolistic power to the copyright owners. In some legal literature, this is also
known as the idea/expression dichotomy, and this is not unique to software.

Acknowledgement of the protection of expression, but not ideas, in is directly US
copyright law whereas such explicit acknowledgement is not in the UK
Copyright, Designs and Patents Act 19884. The idea/expression dichotomy in the
US originated in the United States Supreme Court case of Baker v. Selden5. Baker
v. Selden established the principle that the exclusive reproduction rights in

3 IBCOS Computers Ltd v Barclays Mercantile Highland Finance Ltd [1994] FSR 275
4 See section on UK Copyright, Designs and Patents Act 1988 below
5 Baker v Selden (1880) 101 US 99

10

copyright cannot prevent unprotected ideas or practical features of functional
works from being re-used.

However, there may be occasions where it is not possible to separate the idea
from the expression. This is true when the expression is the only way to express
the idea. The merger doctrine then states that the expression and the idea ‘merge’
and the expression is not subject to copyright. This is because to grant copyright
would be to grant a monopoly over the expression and that would be
inconsistent with copyright laws.

The merger doctrine shows an interesting issue with open source software. As
open source licensing depends on copyright to enforce its terms and conditions,
if copyright does not exist with that particular software because of the merger
doctrine, the terms and conditions lose effect. This does not affect closed source
software as they can depend on contractual terms to safeguard their interests.
However for open source software that is licensed with licences that prevent
distribution if balked (for example the GPL) it effectively prevents the software
from being distributed at all. However as mentioned it should be noted that while
the merger doctrine is well-known in the US, it is not so evident in European or
UK legislation.

An important case in non-literal copying is Whelan Associates, Inc v Jaslow Dental
Laboratory6. In this case, the claimant claimed that the defendant’s Dentcom
computer program infringed the claimant’s copyright on its Dentalab computer
program, even though there was no issue of any literal code being copied.
(Dentcom was written in Event Driven Language (EDL) while Dentalab was

6 Whelan Associates, Inc v Jaslow Dental Laboratory [1987] FSR 1

11

written in BASIC). To reach a decision, the court used what is subsequently
known as the structure, sequence and organization (SSO) test to determine the gap
between idea and expression. The court decided that the purpose or function of
the software is the idea, and that everything not necessary to that purpose or
function is the expression of the idea. As a result, the court held that copyright in
software protects the non-literal structure, sequence and organization of the
software and therefore copying these non-literal components of the software is
infringing:

“We hold that ... copyright protection of computer programs
may extend beyond the programs’ literal code to their structure,
sequence, and organization.”

This case seems to contradict the merger doctrine by seemingly allowing a
monopoly on the idea behind the computer program. However, the Jaslow v
Whelan decision was subsequently criticized and rejected in the landmark
Computer Associates International v Altai7 case which proposed another test for
software copying. In this case, an employee of the defendant who was previously
an employee of the claimant took parts of the software which he wrote for his
previous employer and re-used them in his new job. However, once this was
discovered, the code was re-written and the new code no longer infringed. The
claimant sued as the functionalities of both software components are the same.
The court criticised the Whelan judgement and rejected the SSO test, using the
abstraction-filtration-comparison (AFC) test instead to test for infringement.

7 Computer Associates International v Altai (1992) 20 USPQ 2d 1641

12

This test first abstracts the software by breaking it down in several levels, through
the overall purpose of the software followed by the individual modules that serve
the purpose and then the source code implementing the modules. These granular
pieces are then put through a filtration process that removes elements that cannot
be protected such as elements that are dictated by efficiency (this is basically the
merger doctrine), external factors such as industry standards and common
programming practices, materials from the public domain and factual materials.
Finally the elements that remained after the filtration process are compared with
the alleged infringing materials to see if they are substantially similar. In the
Computer Associates International v Altai case, the court decided that there was
no infringement. As of current writing the Computer Associates International v
Altai decision is the current authority on non-literal copying of software and the
AFC test has been used in subsequent cases in US.

In UK the most important case to date involving non-literal copying of software
is the John Richardson Computers v Flanders8 case in which the court partially used the
AFC test to come to a decision. In this case, the defendant was the ex-employee
of the claimant company, in which he co-wrote the software in question.
Eventually after leaving the claimant company the defendant re-wrote the
software in another programming language for a different platform.
Unfortunately the claimant company was also engaging in porting the software to
the same platform and so sued for copyright infringement. The court adapted the
AFC test in identifying non-literal parts of the infringed software and compared
them for similarities.

8 John Richardson Computers v Flanders [1992] FSR 497

13

The current decision is favourable to the open source software movement. There
are a large number of open source software today that provides alternatives to
existing closed source software, for example Open Office9, an office productivity
suite that is an open source alternative to the popular but closed source Microsoft
Office productivity suite. If copyright is allowed to protect non-literal
components of software such as user interface or program structure, it will stifle
the growth and perhaps even kill off open source projects before they come to
being.

R e v e r s e e n g i n e e r i n g a n d m a k i n g a d a p t a t i o n s o f
s o f t w a r e

As mentioned earlier, copyright was adapted to protect software as a form of
literary work. For other common forms of literary works such as novels, plays or
articles, the ideas and concepts behind them are apparent since the plots or
messages are readily conveyed by reading them. However in software, this is not
so evident. Ideas within software are not immediately apparent to consumers of
the expression. The algorithms, principles and concepts behind software are
usually not distributed to the end-users of the software. The source code for
closed source software is almost never provided to the end-users without heavy
confidentiality protection. This would make the monopoly granted by copyright
on software too strong if not for certain exceptions that are specific to the legal
protection of software.

Current copyright laws provide for exceptions to copyright infringement in
software. The special permitted acts are reverse engineering of software, making
back-up copies of software and making adaptation of software, provided the

9 http://www.openoffice.org

14

users are lawful users. This provision in the UK Copyright, Designs and Patents
Act is provided by the amendment in the 1992 Regulations under sections 50A –
50C. In the US, these exceptions are in the Copyright Act 1976 where the
relevant section is in Chapter 1 section 117 (a) and Chapter 12 section 1201 (f)
(also known as the Digital Millennium Copyright Act (DMCA)). These
exceptions are also found in the European directive on the legal protection of
computer programs.

The ability to reverse engineer and to make adaptations of existing software is
important in open source, as open source projects often offer alternatives to
existing commercial software with similar functionalities. At the same time, open
source licences offer the actual source code without the need for reverse-
engineering. This is probably something not anticipated within the copyright
framework, and it will be interesting to know how the law will reconcile between
these two in cases of conflicts. For example, the UK Copyright, Designs and
Patents Act allows for the adaptation of the software for error correction (section
50(C) (2)). GPL on the other hand prohibits copying or distribution of derivative
works unless it is also licensed under GPL. If a software developer develops a fix
for a GPL licensed software and decide not to release it under GPL, the
developer can use this as a possible defence.

Today, copyright is a stable and accepted means of legal protection for software,
and the interoperability debate has largely been resolved as legislation in the
copyright laws.

15

C o p y r i g h t l a w s i n v a r i o u s c o u n t r i e s

Singapore Copyright Act (Chapter 63)

The Singapore Copyright Act is essentially based on the Australian Copyright Act
1968, which was in turn based on the United Kingdom Copyright Act 1956. The
Copyright Act was amended in 1999 to implement Singapore's obligations under
the TRIPS10 Agreement. The amendments were made on the recommendations
of the Electronic Commerce Committee (ECC) on intellectual property rights.
The ECC was set up in 1998 to enhance Singapore’s copyright law to promote
electronic commerce and encourage a knowledge-based economy.

The Act explicitly includes computer programs as a literary work (in section 7A
part 1a) that is protected but does not attempt to define what a computer
program is. There is also no clear definition between a compiled program and the
source code.

In 2004, Singapore overhauled its intellectual property laws, including the
copyright law. Most of these amendments implemented obligations undertaken
by Singapore under the bilateral free trade agreement with the US signed in 2003.
Many of these changes import some concepts from US IP law, including an
extension of copyright term to 70 years and increasing the coverage of criminal
offences. Copyright enforcement has been made stricter with this overhaul and a
statutory damages system for copyright infringement was introduced. It should
be noted that this brings the copyright law in Singapore closer to what is
practised in US although the main substance of the copyright laws are still rooted
in older English system.

10 See TRIPS section below

16

In Singapore, copyright and other intellectual property laws are managed through
the Intellectual Property Office of Singapore (IPOS)11.

UK Copyright, Designs and Patents Act 1988

Copyright law originated in the United Kingdom from a concept of common
law; the Statute of Anne 1709. It became statutory with the passing of the
Copyright Act 1911. The Copyright, Designs and Patents Act 1988 is the current
legislative source of copyright law in the UK. In the Act, computer programs
subsist as a form of literary work. However, this has not always been so. The
Copyright Act 1956 made no mention of computers or computer programs. The
Copyright (Computer Software) Amendment Act 1985 first made it clear that
computer programs were protected by copyright as literary works, and the latter
Copyright (Computer Programs) Regulations 1992 included computer programs
as part of the protected works under literary works.

Included as part of the amendments are specific exceptions to copyright
infringement. The special permitted acts are for reverse-engineering (or de-
compilation), making back-up copies and making adaptations of the computer
programs. An interesting aspect of the changes made in the Copyright (Computer
Programs) Regulations 1992 is the change to permit certain acts for computer
programs, including reverse-engineering, making back-up copies and making
adaptations of computer programs, which are the amendments made to follow
the directive on the legal protection of computer programs.

The Act does not state expressly that ideas are not protected by copyright. This
compares significantly with the US Copyright Act where it stipulates in section

11 For more information refer to http://www.ipos.gov.sg

17

102: “In no case does copyright protection for an original work of authorship
extend to any idea, procedure, process, system, method of operation, concept,
principle, or discovery, regardless of the form in which it is described, explained,
illustrated, or embodied in such work.” UK law do not explicitly make the
distinction between idea and expression, either in legislation or in case law.
However, cases have been decided that produced the same results, for example,
in Page v. Wisden12, a cricket scoring sheet was held as not protected by copyright.

The Patent Office13 is responsible for developing and carrying out UK policy on
all aspects of intellectual property including copyright. The Intellectual Property
& Innovation Directorate (IPID) is responsible for formulating and
implementing all new UK legislation involving intellectual property. The UK is
party to the Berne Convention and is also a member of WTO therefore adheres
to the TRIPS agreement. The UK has also implemented the EU Copyright
Directive in 2003 and complied with the WIPO Copyright Treaty.

US Copyright Act 1976

The power to enact United States copyright law is granted in the United States
Constitution, which states: “… the Congress shall have power . . . to promote the
progress of science and useful arts, by securing for limited times to authors and
inventors the exclusive right to their respective writings and discoveries.”14 The
copyright tradition follows from the English common law tradition but the key
difference is that copyright is written in the US constitution itself.

12 Page v Wisden (1869) 20 LT 435
13 Referenced from http:// www.patent.gov.uk
14 United States Constitution Article 1 Section 8 clause 8

18

The US Congress first exercised its power to enact copyright legislation with the
Copyright Act of 1790. The Act secured an author the exclusive right to publish
and sell “maps, charts and books” for a term of 14 years, with the right of
renewal for one additional 14 year term if the author was still alive. Today,
copyright last for 70 years after the death of an author, or 75 to 95 years in the
case of works of corporate authorship and works first published before January 1,
1978. The term of copyright is also a key difference from European and UK
copyright law which protects copyrights for 50 years.

In the US, copyright law is administered by the United States Copyright Office15,
a part of the Library of Congress. The US became a Berne Convention signatory
in 1988, and the treaty entered into force with respect to the US on March 1,
1989. The US is also a party to TRIPS, which itself requires compliance with
Berne provisions, and is enforceable under the WTO dispute resolution process.

The US copyright law is a major influence for open source licences as most of the
open source licences are originally written in US and assume US copyright law.
This however becomes an issue that is explored in a later section.

C o p y r i g h t i n t h e i n t e r n a t i o n a l c o n t e x t

Berne Copyright Convention16

The Berne Convention for the Protection of Literary and Artistic Works, adopted
at Berne in 1886, first established the recognition of copyrights between
sovereign states. Prior to the adoption of the Berne Convention, copyright

15 http://www.copyright.gov
16 Referenced from the WIPO Berne Convention website at

http://www.wipo.int/treaties/en/ip/berne/index.html

19

provided only national protection. The Berne Convention required that each
signatory state to recognize the copyright of works created by citizens of other
signatory states. Copyright under the Berne Convention is automatic, no
registration or copyright notice is required. Additionally, signatories to The Berne
Convention were prohibited from requiring any such registration on citizens of
other signatory states.

The Berne Convention provided for a minimum term of copyright protection of
the life of the author plus 50 years, but signatories were free to provide longer
terms of copyright protection. The European Union extended copyright
protection with the 1993 Directive on harmonising the term of copyright
protection while the US followed with the Sonny Bono Copyright Term
Extension Act of 1998.

The US initially refused to become a party to the Convention, as it required major
changes in its copyright law especially to moral rights and the registration of
copyright works. As a result, the Universal Copyright Convention (UCC) was
adopted in 1952, to cater to its objections. In 1989, the US became a party to the
Berne Convention. Since 1967, the Berne Convention has been administered by
WIPO, the World Intellectual Property Organization.

TRIPS Agreement (Trade Related Aspects of Intellectual Property
Rights)17

The Treaty on Trade Related Aspects of Intellectual Property Rights (TRIPS) was
signed on 15 December 1993 as a constituting document of the World Trade
Organization (WTO), and entered into force on 1 January 1995. TRIPS sets

17 Referenced from the WTO TRIPS website at http://www.wto.org/english/tratop_e/trips_e/trips_e.htm

20

minimal rules for every member nation’s national intellectual property law to
prevent member nations from using intellectual property as a hidden trade barrier
against other nations.

TRIPS is a compulsory requirement of WTO membership and any country that
seeks to join WTO must change their national intellectual property law to comply
with TRIPS. Unlike other international intellectual property agreements like the
Berne Convention or the UCC, TRIPS has a powerful enforcement mechanism
because states which do not adopt TRIPS-compliant intellectual property laws
can be disciplined through the WTO's dispute settlement mechanism, which can
authorize trade sanctions against non-compliant states.

Copyright in TRIPS were imported from the Berne Convention. Copyright terms
must extend to at least 50 years after the death of the author and must be
automatic, that is without the need for registration or any other forms of
formalities. TRIPS has a national treatment principle in which member states are
not allowed to offer any intellectual property benefits to local citizens which are
not available to citizens of other TRIPS signatories. TRIPS also follow the most
favoured nation principle in which citizens of all member states are treated
equally. In addition, TRIPS has an important principle, that is, intellectual
property protection should contribute to technical innovation and the transfer of
technology. TRIPS mention explicitly that software is protected under literary
works.

21

WIPO Copyright Treaty18

The WIPO Copyright Treaty, adopted by the World Intellectual Property
Organization (WIPO) in 1996, provides additional protections for copyright. It
ensures that software is protected as literary works (Article 4) and that the
arrangement and selection of material in databases is protected (Article 5). It also
provides authors of works with control over their rental and distribution (Articles
6-8) which they may not have under the Berne Convention alone. At the same
time it prohibits circumvention of technological measures for the protection of
works (Article 11) and unauthorised modification of rights management
information contained in works (Article 12). The WIPO Copyright Treaty is
implemented in United States law by the Digital Millennium Copyright Act
19(DMCA) and in Europe with the EU Copyright Directive20.

18 Referenced from WIPO Copyright Treaty online at http://www.wipo.int/treaties/en/ip/wct

19 Referenced from the US Copyright Office at http://www.copyright.gov/legislation/dmca.pdf
20 Referenced from the Directive 2001/29/EC of the European Parliament and of the Council of 22 May

2001 on the harmonisation of certain aspects of copyright and related rights in the information society.
Full text of this directive can be found at European Union Online web site at
http://europa.eu.int/information_society/eeurope/2005/all_about/digital_rights_man/doc/directive_co
pyright_en.pdf

22

THE OPEN SOURCE SOFTWARE MOVEMENT

The open source software movement began in the programmer culture of US
computer science laboratories in the 1960's and 1970's. The community of
programmers was small and close-knit and code passed back and forth between
the members of the community easily. Keeping code to yourself was considered
unfriendly – after all, you benefited from the work of your friends, you should
return the favour.

Richard Stallman, a graduate student at the Massachusetts Institute of
Technology Artificial Intelligence lab, was part of this community. Soon however,
as computers grew in importance, the community grew larger and commercial
remunerations tempted programmers to sell their software to companies who in
turn guarded their intellectual property jealously. Determined to return to
community of cooperating programmers he was used to, Stallman decided to
devote himself to creating free software. In 1984, Stallman resigned from MIT so
that the university would have no claims on the software he created, and started a
Unix-compatible operating system project called GNU (which stands for Gnu’s
Not Unix). In 1985, Stallman created the Free Software Foundation (FSF), a tax
exempt charity, to support his work and that of his collaborators. To ensure that
his code would always be freely modifiable and distributable, he created the GNU
General Public License (GPL). The FSF proposed a radical concept of ‘free
software’, with their slogan of ‘free’ as in ‘free speech’ not as in ‘free beer’.

In 1992, a second year graduate student at the University of Helsinki named
Linus Torvalds wrote a Unix-like kernel (which is the core of an operating
system) called Linux. Eventually, Linux became the de facto kernel for the GNU
operating system, licensed with GPL. Today Linux is the best known and most

23

visible software that is part of the free and open source software movement,
spawning a multi-billion industry for alternative operating systems.

In 1997, Eric Raymond published a landmark essay entitled The Cathedral and the
Bazaar21 explaining why open source licensing of software will result in higher
quality, less expensive software. Later, a coalition of individuals, led by Eric
Raymond, Bruce Perens, and Tim O'Reilly, formed the Open Source Initiative
(OSI) to promote the pragmatic benefits to the business community, and to
certify free/open source licenses that meet the Open Source Definition. The
Open Source Definition defines the general requirements for a licence to be
considered open source. This was the start of the open source software
movement.

The emergence of the OSI and the more pragmatic way of looking at open
source software did not go very well with the FSF. Although not
confrontationally opposing, the FSF has been known to disagree publicly on the
principles and philosophy behind the OSI. The FSF believes that all software
should always be accompanied by its source code, and the user has the right to
modify and extend that source code. The OSI people share that goal, but do not
define this as a moral right, but instead focus on the pragmatic benefits of source
sharing. Also, while the FSF defines the GNU GPL and its derivatives, the OSI
attempts to capture the commonalities across a range of different licenses. All
free software licenses are open source, but not all open source licenses are free
software.

21 This was later expanded into a book with the same title, see Raymond 1999

24

Although the FSF and the OSI has famously debated over their differences22 in
philosophy in promoting the free and open source software movements, the
desired goals are the same and both parties are not mutually exclusive. In this
dissertation, the term ‘open source’ is used to mean both free and open source
movements.

O p e n S o u r c e L i c e n c e s

There are a large number of open source licences in the market today, derived
from various historical background and usages. The Open Source Initiative has
accepted variety of open source licences as certified open source licences23, and
the Free Software Foundation has also defined a number of free software
licences24. However the objectives of all the licences are very similar except for
some minor differences, mainly to do with the issue of reciprocity.

The sections below are short descriptive analyses of the few most commonly
used open source software licences.

GNU Licences

The GNU Project25 was launched in 1984 to develop a free, complete UNIX
style operating system, the GNU system (GNU is a recursive acronym for
GNU’s Not UNIX). Variants of the GNU operating system, using the Linux
kernel, are now widely used; though these systems are often referred to as Linux.
The Free Software Foundation (FSF) manages the GNU project.

22 See Klang (2005)
23 See http://www.opensource.org/licenses for a full list of open source licences
24 See http://www.fsf.org/licensing/licenses/index_html for a fill list of free licences
25 Referenced from http://www.gnu.org

25

The first version of the GNU General Public Licence appeared in 1988, and it
has continued to evolve into its current form, version 2, released in 1991. The
GPL version 2 is the most popular open source licence to date, with close to 70%
of the software on Sourceforge, the largest repository of open source software in
the world, licensed using it.

The GPL begins with a pre-amble that, though not a part of the licence, describes
the spirit of what the licence wishes to achieve. Firstly, the licence allows the
software to be distributed and modified without additional permission from the
licensor. Secondly, the licence ensures that the licensees are aware that the
software is distributed without warranty. Thirdly, the licence frees the software
from restrictive patents.

One of the key concepts in the GPL is the concept of copyleft, a concept that
places a reciprocity obligation on software developers to license works that are
derived from GPL licensed software under GPL as well. The FSF defines
copyleft as “a general method for making a program free software and requiring
all modified and extended versions of the program to be free software as well.”
The rationale behind copyleft, according to the FSF, is to encourage collaboration
and increase the freedom of the software. Not surprisingly, this reciprocity
obligation is also one of the most criticised features of the GPL.

The fear for some of the closed source software development companies,
especially the larger ones, is that some of the developers (which could sometimes
range in thousands, from different locations around the globe) could accidentally
include GPL licensed code and inadvertently cause the closed source software to

26

be forcibly made GPL. This obligation has often been dubbed by the media as
‘viral’26.

However, the fears are unfounded as the GPL has no special powers beyond
what is given in the copyright laws. Software developers who do not wish to be
restricted by this licensing clause can refrain from deriving from GPL code and if
GPL code is accidentally included, the act of removing the offending code will
rectify the situation quickly. After all, no matter if the code is GPL-licensed or
not, if licensed code is included in any software without proper authorization the
same copyright infringement penalties apply. The label of being ‘viral’ is
descriptively wrong as a license cannot be ‘infectious’ the way a virus (organic or
otherwise) is. It takes the conscious effort of deriving source code from the
original GPL code, deliberately copying and distributing it, and wilfully including
GPL code with non-infringing code that causes copyright infringement.

The GPL, though often criticized, is a well written legal document with clear
upfront concepts. Its enforceability is something that has been often debated and
questioned as well. Although Eben Moglen, the general counsel for the FSF
explains that the GPL is not a contract27, the contractual limitations of the GPL
have also often been subjected to scrutiny.

The definition of the scope of the GPL clearly limits the licence to copying,
distribution and modification activities only. At the same time, only software that

26 Typical commentaries on GPL’s ‘viral’ properties are as in this article from Microsoft cautioning the public

on the usage of GPL
http://www.microsoft.com/resources/sharedsource/Articles/LicensingOverview.mspx

27 In Moglen (2001) he explains “Licenses are not contracts: the work's user is obliged to remain within the
bounds of the license not because she voluntarily promised, but because she doesn't have any right to act
at all except as the license permits.”

27

is integral to or derived from software that is GPL-licensed is affected. The GPL
creates a relationship between the licensor and each of the licensees regardless of
the number of distribution layers that have gone through between them. It also
bars licensees from imposing additional restrictions on the recipient’s rights to
the software.

In addition, the GPL prevents any dilution of its effectiveness. If in any case
where the licensee is not able to adhere to the terms of the GPL, either by
contract or by court enforcement or any other constraints, the licensee loses the
right to perform the activities. For example if the licensee is not able to distribute
the software without charging for the licence, then the licensee loses the right to
distribute the software, but he retains other rights as long as he conforms to the
conditions. This effectively prevents any software licensed with GPL to be
combined in any way with another piece of software not licensed with GPL or
not compatible with GPL. This has serious repercussions, as GPL in-compatible
licences are not just closed source licences. FSF also considers some open source
licences like the Apache licenses (1.1 and 2.0) as well as the MPL in-compatible
with GPL.

Interestingly GPL encourages separate written agreements between two parties to
establish warranties or contracts for maintenance, as one of the business models
in open source is the provision of warranties and software maintenance.

The licensor is explicitly allowed to modify the GPL such that certain
jurisdictions that restrict the GPL can be excluded from GPL allowed activities.
For example, if some countries disallow licensing and distributing some software
in GPL due to pre-existing patents, then the licensor is allowed to limit the
distribution of the software in those jurisdictions.

28

Another popular open source licence from the GNU project is the Lesser
General Public Licence (LGPL). Previously known as the Library General Public
Licence, this licence was created especially to overcome a technical problem with
GPL when used with certain software libraries that requires the software to be
linked to be used. LGPL specifically allows LGPL-licensed software libraries to
be linked with non-GPL licensed software, including closed sourced software.
However especially to be noted is that although the GNU Project provides the
LGPL, it encourages the GPL to be used over LGPL. The LGPL is the second
most popular open source licence, with 11% of all software hosted in
Sourceforge being licensed under the LGPL.

Combined, the two GNU licences provide licensing to approximately 80% of all
open source software in the world. It is not surprising then to know that most of
the criticism focused on open source software and open source licensing centres
around these two licences, and most debates on open source take GPL as the
prime example of an open source licence.

Open Source Definition

The Open Source Definition (OSD) defines the general requirements in order for
a licence to be considered as open source. The OSD is managed by the Open
Source Initiative28 (OSI), an organization formed in 1998 to promote the more
practical usage of open source software. The OSI also certifies license to indicate
if they fall under the OSD. Effectively the OSD is a guideline for licences that
wishes to be open source.

28 Referenced from http://www.opensource.org

29

The OSD’s main concepts for open source are free redistribution, access to
source code and open modification of the source code. In addition, the OSD
requires that the licences do not discriminate against persons, groups of persons
or any fields of endeavour and be technology-neutral. The OSD also tries to close
certain loopholes within existing open source licences.

The OSD is consistent with the older free software definition described by the
FSF but is a looser and more business-friendly definition. It does not attempt as
GPL does, to force derived works to follow the same licensing as the original
work, but does not disallow that either. From a larger perspective the GPL is
OSD certified but OSD certified licences are not necessarily GPL compatible.

The MIT29 and BSD30 Licences

The MIT and BSD Licences are the two earliest open source software licenses.
The MIT Licence is a simple licence that basically grants all of the rights of a
copyright holder including the exclusive right to commercially exploit and create
derivatives from the software. The only two conditions imposed are that the
copyright and permission notices must be included in the copies of the software
and a general disclaimer of warranty.

The BSD Licence is only slightly more restrictive. Originally it carried a provision
that the University of California, Lawrence Berkeley Laboratory must be
acknowledged in all advertising and use of the software, but was this was
removed later on. The only other restriction that is different from the MIT
Licence is that the name of the organization that created the software or it

29 Massachusetts Institute of Technology
30 Berkeley Software Design (BSD is Unix variant first developed from the University of California, Berkeley)

30

contributors cannot be used to endorse or promote the software without prior
written permission.

The MIT and BSD licences are both OSI-certified licences and GPL-compatible
licences, although the original BSD licence is not GPL-compatible. The MIT and
BSD licences are one of the most popular open source licences partly because of
they have been around for a long time.

The Apache Licences

The Apache License has two major versions, the older 1.1 and the newer 2.0
released in 2004. The older Apache License version 1.1 is very similar to the BSD
License, but includes a requirement for the acknowledgement of the creator’s
contributions of the software. The Apache Licence version 2.0 is a more complex
and comprehensive licence. It includes provisions for patent rights granted by the
licence and the use of other licences for derivative software based on the original
software. The Apache Licence version 2.0 also explicitly defines ‘Contributions’
that are special modifications of the software provided to the licensor of the
software for its inclusion into the original software. If accepted, the modifications
will become part of the original software and will fall under the same licence.

The Apache licences are OSI-certified but are not GPL-compatible.

The Artistic Licence

The original Artistic License was written by Larry Wall, the creator of Perl for use
by Perl, a popular Internet programming language. It was designed to allow Larry
Wall and his collaborators to maintain control over the Perl project while
encouraging participation in the project and innovation outside the project. It is

31

often heavily criticised for being ambiguous, self-contradictory and virtually
impossible to interpret. The FSF, who maintains a list of free software licences do
not even acknowledge the Artistic Licence as free software licence although a
later version of the Artistic Licence has been accepted. Although the OSI does
acknowledge the original Artistic Licence, the Open Source Definition actually
defines a point to close up a loophole found in the Artistic Licence. One problem
with the Artistic Licence is that although it prohibits sale of the software it also
allows an aggregate distribution of the Artistic Licensed software with another
piece of software. Interpreted literally, someone can defeat the licence by merely
including a trivial piece of software together with the licensed software.

Due to the popularity of the Perl programming language, the Artistic Licence is
one of the more popular open source licences around.

The Mozilla Public Licence31

The Mozilla Public Licence (MPL) was drafted by Mitchell Baker, a lawyer who
originally worked for Netscape Communications (and later joined and became
president of the Mozilla Foundation). Established in July, 2003, with start-up
support from America Online's Netscape division, the Mozilla Foundation is a
non-profit organization founded to manage the Mozilla project, which in turn
was founded after Netscape released its Communicator browser as open source.

The MPL was initially created along with the Netscape Public Licence (NPL) to
address the issues relating to the decision that Netscape Communications took to
release the binary and source code of the Netscape Communicator web browser
for free. There are two versions – MPL 1.0 and MPL 1.1.

31 Referenced from http://www.mozilla.org

32

Originally developed for software released under the Mozilla Foundation, it has
since been adapted by others as a license for their software, most notably Sun
Microsystems, as the Common Development and Distribution License for
OpenSolaris (the open source version of Solaris 10, a popular UNIX-variant
server operating system).

MPL can be loosely regarded as a hybrid of ideas between the GPL and the
MIT/BSD licences. The FSF regards the MPL as a weak copyleft as it allows
MPL-licensed code to be combined with code licensed under another license.
MPL is not a GPL-compatible licence but it is OSI certified.

A distinguishing difference with the other licences analysed is that the MPL
divides a software work into an Open Source part (called “Covered Code”) and
anything a contributor adds. This arrangement allows any developers to add his
own files and distribute them with the covered code, provided he does not
modify the covered code. However if he does modify the covered code, he must
distribute the modified code under MPL. The license also shows its link to
commercial software licenses with the standard licensing language covering such
topics as liability and arbitration. The MPL is considered one of the better drafted
open source licences and is used in many open source projects including the
popular Firefox browser.

.

33

O p e n s o u r c e l i c e n s e s m a t r i x

The matrix below shows a matrix of the different licences described above, showing the comparison of rights granted by the
different licences as well as the size of the licence document itself. Public domain and closed source licensing are also compared.
Freedoms or Restrictions Public

Domain
32

MIT/
BSD

Apache
1.1

Apache
2.0

Artistic MPL 1.1 GPL LGPL Closed
Source

Has copyright owner � � � � � � � � �
Copyright acknowledgement � � � � � � � � �
Freely copy and use as-is. � � � � � � � � �
Distribute modified versions with same licence � � � � � � � � �
Distribute modified versions under different licence � � � � � � � � �
Link with code under different licence � � � � � � � � �
Must include source code in the distribution 33 � � � � � � � � �
Grants licensee patent rights � � � � � �34 � � �
Disclaimer of warranty/limitation of liability � � � � � � � � �
Non-endorsement provision � � � � � � � � NA
Reciprocity obligations for derivatives (copyleft) � � � � � � � � �
Number of words in licence document (complexity of
licence)

NA 167/
222

294 1,581 771 3,666 2,95635 4,02036 Varied

Table 1 - Free and open source licence rights matrix

32 Public domain software does not require any licences
33 Including in the distribution can also mean allowing the source code to be available for download from the same location as the binaries
34 MPL only grants the patent rights to the original (covered) code
35 Size of this document includes the preamble, which describes the philosophy behind the licence
36 As above

34

O p e n s o u r c e l i c e n s e s p o p u l a r i t y

Sourceforge37 is the largest repository of open source software in the world, with
more than 110,000 registered projects as of July 2005. From an investigation into
Sourceforge, there were 65,362 OSI approved open source projects registered in
Sourceforge in July 2005 (the rest are either proprietary licensed software that has
not been approved by OSI, or projects under public domain).

The General Public Licence is used by the largest number of projects (69%)
followed by the Lesser General Public Licence (11%). The combined numbers
represent 80% of the projects registered in Sourceforge. Although Sourceforge is
not the only repository of open source software, it holds the most significant
number of projects. However it should be cautioned that many major open
source projects are not hosted by Sourceforge (for example, the Apache
Foundation hosts their own projects licensed under the Apache Licences).

License Name Quantity Percentage
GNU General Public License 45101 69%
GNU Library or Lesser General Public License 7388 11%
BSD License 4724 7%
Artistic License 1230 2%
MIT License 1195 2%
Apache Software License v1.1 968 1%
Mozilla Public License 1.1 827 1%
Common Public License 503 1%
Apache License V2.0 452 1%

Table 2 - Free and open source licence popularity in Sourceforge

37 http://www.sourceforge.net

35

LEGAL ENFORCEABILITY OF OPEN SOURCE LICENSES
O p e n s o u r c e l i c e n c e s – c o p y r i g h t l i c e n c e o r c o n t r a c t ?

The idea of the validity and legal enforceability of open source licences often
argue around 2 central ideas on how software can be legally protected. The first
relates to intellectual property, that is, the inherent copyright that the software
acquires as soon as it is written. The second concerns the legal contract that is
drawn up between the software copyright owner and the recipient of the rights.
These can be any of the rights granted to the owner and is acquired by the
recipient including the right to modify or distribute the software. The legal
contract defines the scope and rights that are traded in exchange for the
consideration provided by the recipient.

While no-one debates the rights granted by copyright law, that a legal contract
exists at all in open source licences is sometimes challenged and argued for and
against the legal enforceability of the licences.

Copyright in a work is infringed when a person performs an act restricted by
copyright, unless the licence of the copyright owner is obtained. A licence can be
defined as “an agreement between the owner of the copyright (the licensor) and
another person (the licensee) whereby that person is permitted to do certain acts
in connection with the work involved that would otherwise infringe the copyright
in the work.”38 However, a licence is not necessarily contractual as there are a
number of conditions that must be met before it is considered a contract.

38 Bainbridge (2002) Chapter 4, page 88

36

A contract is “an agreement giving rise to obligations which are enforced or
recognized at law”39 and the heart of a contract is an agreement. Essentially, the
parties to a contract must have a meeting of minds, and there are four key
elements to forming a valid contract. The first is an offer, that is, the willingness
of a party to perform a promise or a task. In the case of a licence as a contract,
the offer is to licence the software to the licensee. The second is the existence of
an acceptance, which is an unconditional assent to the terms of the offer. The
third is sufficient consideration. Consideration is the compensation for the
promise, in this case what the licensee provides to the licensor in return for the
licence. Lastly there must be an intention to create legal relations.

Generally, there is no doubt an offer exists by copyright owners to licence their
software. The acceptance of the licence however is debatable. Comparison is
often made with click-wrap and shrink-wrap closed source licences. In the case of
shrink-wrap licences, the buyer purchases software that is shrink-wrapped in a
box. The licence is only available for the buyer after he pays for the software and
opens it. It has been argued that since the buyer has not seen the licence after the
sale is complete, the licence is not part of the contract. In the case of click-wrap
licences, the licence is again shown to the buyer after he purchases the software
and is usually during the installation of the software. However despite these
conditions, click-wrap and shrink-wrap licences have been accepted as valid
licences in the US through the ProCD v Zeidenberg40 landmark case and the
UCITA41 has confirmed these licences in the US legislation.

39 Treitel GH, Law of Contract 11th ed
40 ProCD, Inc. v. Zeidenberg (1996) F.3d 1447
41 Uniform Computer Information Transactions Act

37

In UK, the validity of shrink-wrap licences was first upheld in the Scottish case of
Beta Computers (Europe) Ltd v Adobe Systems (Europe)42.

Although consideration is often associated with economic compensation, the
promise of doing something in return can be argued as sufficient consideration in
most cases. In all open source licences there is at least some promise that the
licensee needs to keep, whether it is to include the licence in its re-distribution or
to license derivatives using the same licence. The issue however is that of
adequacy of consideration. This means that each side must promise to give or do
something for the other as part of the contract. Without consideration, that is, if
the software and source code is given freely as a gift, there is no contract.

There is usually no monetary consideration given in exchange for open source
licensed source code, although open source licences do not prevent anyone from
charging a fee for the physical transfer of the source code. This is a point that is
sometimes mentioned by persons not familiar with open source concepts,
because ‘free’ is often confused as equivalent as ‘without cost’. However, if
money is not involved, what are the considerations exchanged in order to form a
contractual relationship between the open source software developer and the
user? The answer is that the developer grants the licence to his program in
exchange for the user’s promise to follow the terms and conditions stated in the
licence. However, this begs another question – is this consideration adequate?

Consideration does not necessarily need to be money. However, the
consideration needs to be sufficient, that is, it needs to have some real value.
Lush J. in Currie v Misa43 referred to consideration as consisting of a detriment to

42 Beta Computers (Europe) Limited v. Adobe Systems (Europe) Limited. FSR (1996) 367
43 Currie V Misa (1875) LR 10 EX 153

38

the promisee or a benefit to the promisor. From this point of view, the promise
to follow the terms and conditions in open source licences can be argued as
sufficient consideration.

Finally, the tricky rule of intention to create legal relations can be debatable. In
the GNU GPL, Eben Moglen, the general counsel for the FSF declared that
“Licenses are not contracts”44. As Moglen clearly states, the GPL is not
considered a contract, but a copyright licence. Following the rule of intention to
create legal relations it would seem that the GPL cannot be considered a legal
contract. However there are no such statements in other open source licences
and it is arguable if such statements can be considered as proof of non-intention
at all.

The issue of privity of contract is another issue that has been brought up by a few
writers45, especially when discussing the GPL, which is taken as the most
representative of all the open source licences. Privity of contract is the
relationship that subsists between the two contracting parties. Essentially, no one
but one of the parties can go to court and enforce the contract even if the
contract was to operate to a third party's benefit. In the case of secondary
distribution where an original recipient of the software re-distributes the software,
the issue is if the terms and conditions of the GPL still valid for the secondary
recipient as there is no privity of contract between the original licensor and the
secondary recipient.

On analysis, GPL is a non-exclusive, transferable licence (a licence that allows
sub-licensing). The distribution of the GPL code is in fact a transfer within the

44 See Moglen (2001)
45 See Merges (1997), McGowan (2001) and Ravicher (2000)

39

terms of the licence. Distribution is allowed and governed with terms and
conditions within the licence itself. In paragraph 1, the GPL specifies that the
code can be distributed provided the copyright notice and the disclaimer of
warranty are conspicuously published. This effectively means that the distribution
of the code establishes a relationship between the secondary recipient and the
original licensor. Paragraph 6 of the GPL confirms this: “Each time you
redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions.”

Privity of contract also applies when the recipient creates derivative works from
the original GPL code. However, since the GPL requires derivative works to be
distributed under the GPL the relationship is between the creator of the
derivative work and the secondary recipient.

It would seem that a clear-cut affirmation if open source licences are copyright
licences or legal contracts is yet to be determined. Although both legal contracts
and copyright licences have different enforcements, one which is through
covered by the contract itself, and the other is through copyright legislation, both
enforces the same terms and conditions on the licensees. However, one
noticeable difference is that without a legal contract, licensors can revoke their
licences at any point in time, subject to equitable rules. This has some serious
repercussions if the software is already well known in the market as the licensor is
not obliged to continually provide the software under the same licence.

However, the initial creator of the code can only terminate the open source
licence rights he has granted but not in the derivative works. The creator of the
derivative works can continue to distribute the derivative works own his own

40

code but not the original code, as is clearly seen from Steward v Abend46, which
states that “the aspects of a derivative work added by the derivative author are
that author’s property, but the element drawn from the pre-existing work remains
on grant from the owner of the pre-existing work.”. In the section 103 (b) of the
US Copyright Act, it is also stated that

“The copyright in a compilation or derivative work extends only to
the material contributed by the author of such work, as
distinguished from the preexisting material employed in the work,
and does not imply any exclusive right in the preexisting material.
The copyright in such work is independent of, and does not affect
or enlarge the scope, duration, ownership, or subsistence of, any
copyright protection in the preexisting material.”

Also, in many open source software projects the final software incorporates code
from more than one creator therefore unilateral termination of rights seems
unlikely as there are little to no benefits to any single one creator to terminate the
rights. On the other hand projects with a single creator or a small number of
contributors have been known to form commercial enterprises to use the
software for commercial licensing. However, in these cases, the software is
usually dual-licensed instead.

Another deterrent for creators to retract or terminate the rights is usually the
pressure from the open source community itself. As with any companies, good
will from the community is important for continual business, especially
technology companies. Technology companies depend on the community to
supply the credibility, marketing and resources to fuel the running of the

46 Stewart v. Abend, (1990) 495 US 207

41

business. In the recent case of SCO Group v IBM, the fall-out from the technology
community that supported the software industry has caused tremendous damage
to the SCO Group. The SCO Group’s stocks slid down from a high of more
than US$20 in the aftermath of the suit, to the current price of less than US$5.

On the other hand, closed source licences are almost always written as a legal
contract between the licensor and the licensee, and additional terms and
conditions are almost always added into the contract. These terms are often
additional safeguards that define the boundaries and scope of the relationship
between the licensor and the licensee. In some instances, the legal contract itself
tries to restrict copyright laws in certain areas. For example, most closed source
licences explicitly disallow reverse engineering of software although copyright law
equally explicitly allows that.

From the analysis it is not clear if all open source licences can be considered valid
contracts but similar closed source licences have been accepted as valid contracts
albeit controversially. Interestingly if a contract does not exist for open source
licences, sometimes the copyright laws of certain countries impose a harsher
criminal offence on copyright infringers47; therefore it would seem that it is to the
benefit of the licensee not to use this as a defence against enforceability of open
source software licences.

C o p y r i g h t l a w i n o p e n s o u r c e l i c e n c e s

The act of creating useful and non-trivial software, and later marketing and
distributing it to a larger audience is often a capital-intensive activity. In the early

47 In the Singapore Copyright Act Section 136 mentions “… shall be guilty of an offence and shall be liable

on conviction to a fine not exceeding $10,000 for the article or for each article in respect of which the
offence was committed or $100,000, whichever is the lower, or to imprisonment for a term not exceeding
5 years or to both”

42

days of software development, software is tightly integrated and tied to specific
hardware. The source code and the software itself is often given freely to anyone
interested enough to use or modify it. In most cases, the hardware itself is large,
expensive and is usually owned by large corporations, research facilities or
universities. The marketing and sale of software as a separate industry is non-
existent and software is distributed as part of the sale of the computer hardware.
Legal property protection of software was non-existent.

As technology advanced and hardware became more widely used especially with
the advent of personal computers, software became eventually more de-coupled
from the hardware. As a result, the marketing and sale of computer software
became firstly a separate business activity and eventually became a distinct and
even larger industry than computer hardware. With the increase of business
activity it is inevitable that software is treated as property that is bought and sold.
Legal property protection for software was something new, and copyright was
eventually used for the protection of software. However, copyright does not fit
entirely – it was created to protect creative works that are static and software is
more than that. In addition, the problems of copyright protecting more than the
literal representations of software became debatable.

Copyright was eventually chosen as the main legal vehicle for software
protection, although patents are currently becoming the new battleground for
further legal protection. However, because the current ruling for interoperability
removed copyright protection for interfaces and structure as well as for reverse
engineering, closed source software licences often tries to compensate by adding
such rules in the licence itself as part of a contractual agreement. For example, in
the end-user licensing agreement distributed along with Adobe Premiere, a
popular video editing application from Adobe Systems, there is such a clause:

43

“You also agree not to reverse engineer, decompile, disassemble or
otherwise attempt to discover the source code of the Software
except to the extent you may be expressly permitted to decompile
under applicable law, it is essential to do so in order to achieve
operability of the Software with another software program, and
you have first requested Adobe to provide the information
necessary to achieve such operability and Adobe has not made
such information available. Adobe has the right to impose
reasonable conditions and to request a reasonable fee before
providing such information. Any information supplied by Adobe
or obtained by you, as permitted hereunder, may only be used by
you for the purpose described herein and may not be disclosed to
any third party or used to create any software which is substantially
similar to the expression of the Software.”

Such a clause obviously extends the reach of copyright using a contractual
agreement. There is even a clause at the beginning of the agreement:

“YOU AGREE THAT THIS AGREEMENT IS
ENFORCEABLE LIKE ANY WRITTEN NEGOTIATED
AGREEMENT SIGNED BY YOU. IF YOU DO NOT
AGREE, DO NOT USE THIS SOFTWARE.”

Most software developers (companies) resort to such licensing agreements to add
additional weight of a legal contractual agreement to the protection of their
software.

Copyright for open source software is even trickier. Although the software itself
is not different but the intention of the copyright owner is to essentially revert

44

back to the original days of freely shareable software. However, the environment
today is significantly different from the past and the copyright owner can no
longer just release the software into public domain. This is because public domain
software can be easily subverted into closed source software if another party takes
the code, modifies it and re-licenses it.

To achieve the intentions of the copyright owner, the software needs to be
licensed to prevent this, and open source software licences has this as a basic
objective. Open source software copyright then involves the liberalization of the
following copyright rights:

• Copying the software
• Distributing the software
• Distributing the source code
• Modifying the source code

All of these activities are prohibited in most closed source software, as the closed
source software licence either explicitly prohibits it or do not mention it,
therefore allowing copyright to protect it by default. If there is no specific
licensing agreement in closed source software, the copyright owner owns all the
rights to the software, and no-one else has any rights except those mentioned in
copyright law. In contrast, open source licences gives these rights away to the
licensees in exchange for relatively minor promises.

Enforcing open source licences therefore lies strongly in copyright protection.
The existence of copyright laws allows for the protection of software as property
and this applies to both closed source software as well as open source software.
Issues relating to copyright that is seemingly ambiguous for open source licensing
seem a moot point as copyright applies uniformly for any software regardless of
the licensing that it uses. Effectively if copyright cannot be enforced on open

45

source software, it cannot be enforced on closed source software and if copyright
can be enforced on closed source software there is no reason why it cannot be
enforced on open source software.

C r o s s - j u r i s d i c t i o n a l i s s u e s i n o p e n s o u r c e l i c e n c e s

A major issue with copyright is the issue with the applicability of the law in
different countries. Copyright laws are territorial and generally do not cross
borders. Although treaties such as the Berne Convention, TRIPS and other
international agreements provide guidelines and directives for member signatories
to adhere to, copyright is a local law that can behave differently in different
jurisdictions.

Closed source software often overcomes this by mentioning explicitly how the
licence will apply in different countries, and often has a general rule to define its
applicability. For example, in Microsoft’s end-user licensing agreement, the
following clause explains how applicable laws may direct the licence:

“If you acquired this Software in the United States, this EULA is
governed by the laws of the State of Washington. If you acquired
this Software in Canada, unless expressly prohibited by local law,
this EULA is governed by the laws in force in the Province of
Ontario, Canada; and, in respect of any dispute which may arise
hereunder, you consent to the jurisdiction of the federal and
provincial courts sitting in Toronto, Ontario. If you acquired this
Software in the European Union, Iceland, Norway, or Switzerland,
then local law applies. If you acquired this Software in any other
country, then local law may apply.”

46

Open source software however generally does not have such clauses. In addition,
open source software has other issues relating to cross-jurisdiction applicability of
the licence.

A first problem is with the language of the licence itself. Most open source
licences are written in English and in fact assumes certain facts that are only
applicable in US laws (where most of the open source licences are written).
However in many countries, there are laws that mandate the use of the national
language for legal documents including licences and contracts. For example,
under the German Civil Code section 205 paragraph 2, there is a provision for
consumer contracts to be in German in order to be valid. In France, there are
laws relating the mandatory usage of French in the description of the scope and
conditions of a warranty of goods, products and services. It is therefore
conceivable that a software licence written in English such as most of the open
source licences, is not legally binding in France or other countries that have
similar restrictions. Assuming the software licence is a valid contract in the first
place, it can be held not binding under particular circumstances because it is not
written in the correct language.

Another problem arises in the legal background which copyright law is derived
from. In countries that derive laws from the English legal system, copyright arose
from the economic rights of copywriters and publishers while most continental
European countries (for example Germany and France) derive copyright from
the concept of droit d’auteur, which focuses on the moral rights of the original
author. “Author’s right” – droit d’auteur in French – is founded on the idea that a
work of creation is intimately linked with its creator like a child from his father.
The “copyright” concept on the other hand stems from the common law
tradition stating that authors hold a property or economic right to their creations
that can be traded on the basis of economic principles. Although the droit d’auteur

47

principle has been included in copyright concepts in common law countries as
moral rights, the most important being attribution and reputation, the concepts
are not exactly the same.

The sticking point is that in the droit d’auteur system, the author cannot waiver his
moral rights without knowing the changes done to the source code, as it will
affect the reputation of the author. Without taking care of such a provision, open
source licences stand a serious chance in being repudiated when it comes to the
modification and distribution of derivative works. This is particularly serious in
GPL, which prevents the distribution of the software altogether if the issue of
source code modification and the moral rights of the author is not correctly dealt
with.

A third problem arises from the question of warranties and disclaimers. In certain
countries, especially continental European countries, general disclaimers are not
valid in a contract due to provisions for unfair terms in contracts. As a result, the
disclaimers which are a part of all open source licences can be made non-binding.
This has strong implication on the entire open source software movement, as one
of the basic tenets of open source is the clear disclaimer of liability and warranty,
as no software developer will be willing to be liable for voluntary and cost-free
software. GPL is again implicated strongly as it explicitly mentions in paragraph 7
that the distribution rights will be cancelled if the conditions in the GPL are not
met.

A fourth problem is in the interpretation of derivative works across different
jurisdiction. In the US, derivative works are defined in the Copyright Act under
section 101, which states that a derivative work is “a work based upon one or
more pre-existing works.” In the Singapore Copyright Act, adaptation is defined
in section 7 (1) as “a version of the work (whether or not in the language, code or

48

notation in which the work was originally expressed) not being a reproduction of
the work”. An analysis of both definitions can bring two different interpretations
of the definitions in the different countries. The Singapore definition is broader
in which any modification in the computer program, no matter how little (which
will make it not a reproduction of the work) will be considered an adaptation
while in US the interpretation of minor usage of the code might not be
considered as a derivative work. For example, a small piece of code taken from
an open-source licensed software might not be considered as derivative work in
US, but can be considered as an adaptation in Singapore.

It seems clear that most open source licences are not ready for cross-jurisdictional
applicability outside of the US or other common law countries and they stand a
possible chance of being set aside as non-binding for particular clauses
mentioned in the licence. However it is interesting to note that the Munich
Court48 of Appeals in Germany has ruled that the GPL is generally valid although
it is only legally binding in its English version and only parts of it (the exclusion
of liability and warranty as explained earlier will not be valid in Germany).

CONCLUSION

Open source or the concepts behind it are not new, in fact, software was
originally entirely shareable among the close community of software developers.
Copyright did not apply to software in those early days of software development
and legal protection of software became necessary only with the gradual
commercialization of software as a separate intellectual commodity. In this
dissertation, we went through how copyright was modified to be used for
software protection and the problems that ensued as a result of this development.

48 Harald Welte v. Sitecom, District Court of Munich, (2004) 21 O 6123/04. Also see Höppner 2004

49

We also discussed what it means for software to be open source licensed and
analysed some of the most popular and common open source licences today.

With the background information and the analysis, we went on to investigate if
open source licences are enforceable in a court case and discussed the various
issues that can possibly influence the outcome. However because there has not
been a court case that deals fully with the issues with open source licensing, the
points discussed are nothing more than anticipation based on interpretation of
current legislation and related cases on legal software protection.

As this investigation shows, there are numerous points that weaken the
enforceability of open source licences, especially those that debated the validity of
an open source licence as a legally binding contract and points that discussed on
cross-border issues with open source licences. The interesting point to note is
although the open source licence might potentially be set aside as a non-legal
biding contractual agreement as a result of its validity as a contract, copyright still
provides significant weight in ensuring its enforceability. Unfortunately the cross-
border issues that are inherent in most open source licences today might prove to
be a stumbling block for enforcement outside of the US. However there is no
conclusive evidence that any open source licence would not be enforceable in any
court today; in fact GPL was considered valid in a Munich court. How other
cases turn out in the future remains an interesting development to be followed
on.

The open source software movement is an exciting alternative development in
the fast-paced software industry, one that promises a change in the way we look
at how software is developed, distributed and sold. As its major premise lies
within the legal protection of software licensed with this unique licensing

50

mechanism, it is important that the evolution of the legal processes that governs
it matches the ongoing developments in order to facilitate its progress.

51

REFERENCES

• David Bainbridge, Intellectual Property 5th Edition (2002)
• Patrick K. Bobko, Linux and General Public Licenses: Can Copyright Keep Open

Source Software Free?, 28 AIPLA QJ 81 (2000)
• Patrick K. Bobko, Open-Source Software and the Demise of Copyright, 1 Rutgers

Computer & Tech. LJ 51 (2001)
• Costello, S., Settlement nears in open source GPL suit, NetworkWorld Fusion

News (2002) at <http://www.networkworld.com/news/2002/0305settle
gpl.html>

• Hahn, R.W., Government Policy toward Open Source Software, Aei-Brookings Joint
Center for Regulatory Studies

• Ira V. Heffan, Copyleft: Licensing Collaborative Works in The Digital Age, 49 Stan.
L. Rev. 1487 (July. 1997)

• Höppner, J. P., The GPL prevails: An analysis of the first-ever Court decision on the
validity and effectivity of the GPL, 1:4 SCRIPT-ed 662 (2004) at
<http://www.law.ed.ac.uk/ahrb/script-ed/issue4/GPL-case.asp>

• Hannu Järvinen, Legal Aspects of Open Source Licensing, University of Helsinki,
Department of Computer Science (2002)

• Dennis M. Kennedy, A Primer on Open Source Licensing Legal Issues: Copyright,
Copyleft, Copyfuture, 20 St. Louis U. Pub. L. Rev. 345 (2001), available at
<http://www.denniskennedy.com/opensourcedmk.pdf>

• Kennedy, G., New Codes and Protocols for Cyberspace: Current Issues in Internet
Governance, C.T.L.R. 2000, 6(8), 223-229

• Mathias Klang, Free software and open source: the freedom debate and its consequences,
First Monday (2005), at
<http://www.firstmonday.org/issues/issue10_3/klang>

52

• Daehwon Koo, Patent and Copyright Protection of Computer Programs, 2 Intell.
Prop. Qtrly. 188 (2002)

• Paul B. Lambert, Shareware: Problems of Definition and Legal Nature After The
Ozemail Decision, 22 Eur. Intell. Prop. Rev. 595 (2000)

• Paul B. Lambert, Copyleft, Copyright and Software IPRS: Is Contract Still King?, 11
Eur. Intell. Prop. Rev. 165 (2001)

• Lawrence Lessig, The Future of Ideas, (2002)
• David McGowan, Legal Implications of Open-Source Software, 2001 U. Ill. L. Rev.

241 (2001)
• Robert P. Merges, The End of Friction? Property Rights and Contract in the

'Newtonian' World of On-Line Commerce, 12 Berkeley Tech. LJ 115 (1997)
• Axel Metzger , Free Content Licenses under German Law, talk given at the

Wissenschaftskolleg, Berlin, June 17, 2004, at
<http://lists.ibiblio.org/pipermail/cc-de/2004-July/000015.html>

• Eben Moglen, Enforcing the GNU GPL, at
<http://www.gnu.org/philosophy/enforcing-gpl.html>

• Maureen O'Sullivan, Making Copyright Ambidextrous: An Expose of Copyleft, 2
J.I.L & Tech. (2002) at <http://elj.warwick.ac.uk/jilt/02-3/osullivan.html>

• Daniel B. Ravicher, Facilitating Collaborative Software Development: The
Enforceability of Mass-Market Public Software Licenses, 5 Va. J.L. & Tech. 11 (2000)

• Eric S. Raymond, The Cathedral and the Bazaar, (1999)
• Andrew M. St. Laurent, Understanding Open Source and Free Software Licensing,

(2004)
• Richard Stallman et al., The GNU Operating System and the Free Software Movement

Open Sources: Voices from the Open Source Revolution, (1999)
• Mikko Välimäki, The Rise of Open Source Licensing: A Challenge to the Use of

Intellectual Property in the Software Industry (2005)

53

• Henning Wiese, The Justification of the Copyright System in the Digital Age, 24 Eur.
Intell. Prop. Rev. 387 (2002)

