The Value of Board Independence in an Emerging Market: IV, DiD, and Time Series Evidence from Korea

Bernard S. Black* Woochan Kim†

*University of Texas School of Law
†KDI School of Public Policy and Management

This working paper site is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the publisher’s permission.
http://law.bepress.com/alea/17th/art52
Copyright ©2007 by the authors.
The Value of Board Independence in an Emerging Market: IV, DiD, and Time Series Evidence from Korea

BERNARD S. BLACK
University of Texas Law School

WOOCHAN KIM
KDI School of Public Policy and Management

Draft December 2006
(Please do not quote without permission)

University of Texas School of Law
Law and Economics Working Paper No. 89

University of Texas, McCombs School of Business
Working Paper No, FIN-xx-06

KDI School Working Paper Series
Working Paper No. 06-xx

European Corporate Governance Institute

This paper can be downloaded without charge from the Social Science Research Network electronic library at:
http://ssrn.com/abstract=xxxxxx
The Value of Board Independence in an Emerging Market: IV, DiD, and Time Series Evidence from Korea+

BERNARD S. BLACK*
University of Texas Law School

WOOCHAN KIM**
KDI School of Public Policy and Management

Partial draft December 2006

ABSTRACT
Outside directors and audit committees are widely considered to be central elements of good corporate governance. Yet evidence to support this conventional wisdom is limited. Prior work on the connection between board composition and committee structure and overall firm value or performance relies principally on cross-sectional data. Most of this work finds little association between these governance elements and shares prices or overall firm performance. Even when an association is found, causation is unclear. Performance could predict board composition and committee structure, rather than vice-versa, or optimal board composition and committee structure could be endogenous to other firm characteristics.

Korea provides a unique laboratory for addressing these empirical issues. Based on a combination of time-series results with firm fixed effects, an instrumental variable that relies on unique features of Korean law to instrument for board structure, and difference-in-difference estimation, we report evidence consistent with a positive share price impact of boards with 50% or greater outside directors, and weaker evidence of a positive impact from creation of an audit committee. For board composition, this apparent value exists both for firms which are required by law to have 50% outside directors and for firms which voluntarily adopt this practice. Differences between OLS and firm fixed effects results are sometimes large, confirming the unreliability of OLS estimates.

Key words: Korea, outside directors, audit committees, corporate governance, board of directors, emerging markets

JEL classification: G32, G34

+ We thank [to come] and workshop and conference participants at [to come] for comments on earlier drafts. We also thank KDI School of Public Policy and Management for financial support and [to come] for research assistance.

* Hayden W. Head Regents Chair for Faculty Excellence and Professor of Law, University of Texas Law School, and Professor of Finance, Red McCombs School of Business, University of Texas. Tel: (+1) 512-471-4632, fax: (+1) 512-232-1767, e-mail: bblack@law.utexas.edu

** Associate Professor of Finance, KDI School of Public Policy and Management, Chongyangri-Dong Dongdaemun-Ku, Seoul, Korea 130-868. Tel: (+82-2) 3299-1030, fax: (+82-2) 968-5072, e-mail: wc_kim@kdischool.ac.kr
1. Introduction

Outside directors are widely considered to be central to good corporate governance. An audit committee of the board of directors, staffed principally by outside directors, is also a conventional prescription. Both elements are now prescribed by law in many countries, and are central components of most voluntary or “comply or explain” corporate governance codes. Yet empirical support for the value of these governance elements is limited. In developed countries, there is no reliable evidence that board composition predicts share price or overall corporate performance. There is some cross-sectional evidence on the value of outside directors in emerging markets, but little on audit committees.

Moreover, cross-sectional results may be unreliable. Performance could predict board composition and committee structure, rather than vice-versa, or optimal board composition and committee structure could be endogenous to other firm characteristics. A further problem is that different elements of governance often correlate with each other. Thus, unless one controls for a broad range of governance attributes, one could incorrectly ascribe a result to the attribute being studied, rather than other unstudied attributes.

Korea provides a unique laboratory for addressing these empirical issues. We use largely hand-collected data on board composition, committee structure, insider ownership, disclosure and other aspects of governance to build a broad Korean governance index from 1998 through 2004, including subindices for board independence, the existence of board committees, disclosure, ownership parity, shareholder rights, and board procedure. We then assess the importance of board independence and board committees, controlling for other aspects of governance and a broad array of company characteristics. Using a combination of time-series results with firm fixed and random effects, an instrumental variable that relies on unique features of Korean law to instrument for board structure, and difference-in-difference estimation, we report evidence consistent with a economically important and statistically strong positive impact of boards with 50% or greater outside directors on Tobin’s \(q \), as well as evidence of a positive impact from creation of an audit committee. The predicted effect of 50% outside directors on
Tobin's q is similar in magnitude for large Korean firms, which are required by law to have 50% outside directors, and smaller firms which voluntarily adopt this practice. For firms with less than 50% outside directors, we find no evidence that the proportion of outside directors predicts Tobin's q.

The differences between OLS and firm fixed effects estimates are sometimes large. In particular, the association between presence of an audit committee and Tobin's q is non-robust in pooled OLS estimates but is statistically strong in a firm random effects or firm fixed effects specification. These differences support doubts about the reliability of OLS estimates in research on boards of directors, or on corporate governance more generally (Chidambaran, Palia and Zheng, 2006).

Prior research has been largely limited to OLS estimation, and usually to cross-sectional results, for two reasons. The first is data availability. In emerging markets, time series data on governance has not been available. In developed markets, firm-level governance changes slowly over time, so efforts to apply firm fixed or firm random effects approaches to time-series data have not been successful. Moreover, good instruments for governance are generally not available, leading researchers to use either no instruments or suspect instruments.

Korea offers a unique laboratory that lets us address these problems. We construct a multiyear governance index covering the vast majority of Korean public companies over 1998-2004. Firm fixed effects and firm random effects specifications are viable because Korean governance changed significantly over this period, largely in response to the 1997-1998 East Asian financial crisis. In response to this crisis, Korea adopted important governance rules in the second half of 1999. These rules require large firms (with assets over 2 trillion won, around $2 billion) to have 50% outside directors, an audit committee with an outside chair and at least 2/3 outside directors as members, and an outside director nominating committee.

The exogenous adoption of these rules, and the resulting involuntary changes in the governance of large firms, make feasible an instrumental variable approach to assessing the joint effect of these governance elements on firm value (the instrument is an asset size dummy at 2
trillion won). The adoption of these new rules also lets us employ difference-in-difference estimation of the impact of these rules on share price. The mean Tobin's q of large firms, relative to the mean Tobin's q of small firms, jumps by about 0.25 during the second half of 1999 (precisely when it should if governance changes at large firms have a causal impact on Tobin's q). This gap remains stable thereafter.

We thus report evidence, from a variety of approaches, consistent with 50% outside directors and audit committees having an important and potentially causal impact on the market value of Korean public firms. There appears to be separate value from: (i) having 50% outside directors; (ii) having more than 50% outside directors; and (iii) having an audit committee. There is lesser apparent value to having an outside director nominating committee, a compensation committee, or a proportion of outside directors that is more than the legally required floor of 25%, yet less than 50%. Foreign directors add value if they are part of a majority outside board, but not otherwise.

A caveat: Most Korean companies have a controlling shareholder or family. Share prices, however, are the trading prices for noncontrolling shares. This paper cannot assess whether the relationship between governance elements and market value reflects governance affecting a firm's overall value, whether this relationship reflects outsiders realizing higher observable share price, at the expense of lower (unobservable) private benefits to insiders, or some of both. However, the gradual tendency for at least some smaller Korean firms to adopt 50% outside directors and audit committees is consistent with net value increase from these governance measures.

This paper is organized as follows. Section 2 reviews prior literature on the connection between board composition, or the presence of an audit committee, and overall firm value or performance. Section 3 describes our data sources and how we construct our governance index. Section 4 covers methodology. Section 5 presents results. Section 6 concludes.

2. Literature Review

We provide here a brief literature review, focusing on research in emerging markets.
2.1. Board Independence

2.1.1. Developed Markets

Board independence predicts firm behavior in a variety of ways: For example, more independent boards make better acquisition decisions, are more likely to choose an outsider as CEO, are more likely to resist a takeover bid, and are slightly more likely to fire the CEO following poor performance. For reviews, see Bhagat and Black (1999), Hermalin and Weisbach (2003). However, studies have not found a positive association between board independence and overall firm value or performance. Morck, Shleifer, and Vishny (1988), Baysinger and Hoskisson (1990), Hermalin and Weisbach (1991), Mehran (1995), and Klein (1998) all find no significant relationship between the two in the United States. Yermack (1996), Agrawal and Knoeber (1996) and Bhagat and Black (2001) find a negative relationship in the U.S. Erickson, Park, Reising, and Shin (2005) confirm this negative relationship for Canadian firms. Bhagat and Black (2001) and Erickson et al. (2005) report evidence that the negative relationship arises from reverse causation, in which firms which experience poor performance increase the independence of their boards.

Evidence using investment companies is slightly more encouraging. Using a sample of REITs, Friday and Sermans (1998) find that increased outside director representation on the board lead to increased market-to-book ratios up to a point. Using a sample of closed-end investment funds, Del Guercio, Dann, and Partch (2003) report that funds with relatively low expense ratio, one measure of board effectiveness, have a higher proportion of independent directors. Using a 2SLS framework, however, Ghosh, Chinmoy and C. F. Sirmans (2003) find that while independent directors enhance REIT performance, the effect is weak.

2.1.2. Emerging Markets

Contrary to the inconclusive findings in developed markets, emerging market studies do find a positive relationship between board independence and firm performance. Using a sample of Korean public firms during 1999-2002, Choi, Park, and Yoo (2006) finds that the effect of independent directors on firm performance is positively strong. Using a sample of Taiwanese

Emerging market studies also find evidence that foreign directors have a positive impact. Choi, Park, and Yoo (2006) show this using Tobin’s as a performance measure. Choi and Hasan (2005) also show this, but using a narrower sample of Korean banks during 1998-2002. They show that the presence of a foreign director increases the accounting performance of banks. Using a sample of firms in Norway and Sweden during 1996-1998, Oxelheim and Randøy (2003) show that firms that have Anglo-American board members have higher firm value.

2.2. Audit Committees

Existing literature do not show a strong relationship between the presence of audit committee and firm performance. Using U.S. data, Klein (1998) found that the presence of audit committee had no effect on a variety of accounting and market performance measures. Vafaes and Theodorou (1998) and Weir, Laing, and McKnight (2003) also find similar results using U.K data.

When using indirect measures of performance, however, audit committee independence and the quality of its members seem to have an effect. Anderson, Mansi, and Reeb (2004), show that fully independent audit committees are associated with a significantly lower cost of debt financing. They also find that yield spreads are also negatively related to audit committee size and meeting frequency. Xie, Davidson III, and DaDalt (2002) show that audit committee members with corporate or financial backgrounds are associated with firms that have smaller discretionary current accruals. They also show that audit committee meeting frequency is also associated with reduced levels of discretionary current accruals. Using an event study approach, Defond, Hann, and Hu (2004) document a positive market reaction to the appointment of
accounting financial experts assigned to audit committees but no reaction to nonaccounting financial experts.

3. Data And Index Construction

Prior to 1998, few Korean firms had outside directors and almost none had 50% outside directors. Following the East Asian financial crisis in 1997-1998, Korean firms began to introduce outside directors and other governance reforms. We draw on a variety of data sources to construct a multi-year corporate governance index \(\text{KCGI} \) from year-end 1998 (just after the crisis) through year-end 2004. Observations are annual, except for 2001, when we also have mid-year data. We thus have governance measured at 8 different times over a 7-year period.

We construct \(\text{KCGI} \) and its component indices as follows. Black, Jang and Kim (2006) provide further details. \(\text{KCGI} \) (0 ~ 100) includes 27 governance elements, divided into five equally weighted indices (each 0~20): Board Structure (5 elements); Board Procedure (14 elements); Shareholder Rights (4 elements); Disclosure (3 elements); and Ownership Parity (1 element). Board Structure Index is in turn composed of Board Independence Subindex (2 elements, 0 ~ 10), and Board Committee Subindex (3 elements, 0 ~ 10). Within each index or subindex, elements are equally weighted. Assuming no missing values, the Board Independence and Board Committee subindices, which are the principal focus of this study, are defined as:

\[
\text{Board Independence Subindex} = 10 \times \frac{(b1 + b2)}{2}
\]

\[
b1 = 1 \text{ if firm has } 50\% \text{ outside directors; 0 otherwise}
\]

\[
b2 = 1 \text{ if firm has } > 50\% \text{ outside directors; 0 otherwise}
\]

\[
\text{Board Committee Subindex} = 10 \times \frac{(b3 + b4 + b5)}{3}
\]

\[
b3 = 1 \text{ if firm has outside director nominating committee, 0 otherwise}
\]

\[
b4 = 1 \text{ if firm has audit director committee, 0 otherwise}
\]

\[
b5 = 1 \text{ if firm has compensation committee, 0 otherwise}
\]

If values are missing for a particular firm for a particular element, we compute the relevant index or subindex based on the average of the non-missing elements. Sample size varies from 368 to 501, depending on year. Figure 1 shows mean values of Board Independence Subindex (0~10), Board Committees Subindex (0~10), and remainder of Korean Corporate Governance Index
(0–80) from year-end 1998 through year-end 2004, for balanced panels of large Korean public firms (assets > 2 trillion won) and small Korean public firms, respectively. *Figure 2* shows fraction of firms with indicated scores for Board Structure Index, Board Independence Subindex, and Board Committee Subindex at year-end 1998 and 2004 for small and large Korean public firms.

Our principal data sources are:

- We determine board composition based on books published annually by the Korea Listed Companies Association (KLCA), containing the name, age, title, education, and affiliation of each director of each Korean public company from 1989 to 2004.
- We compile ownership data based on the ownership data base compiled by TS2000 and the annual reports of each company.
- We extract a number of governance elements from annual surveys of public companies, conducted initially in mid-2001, and at each year-end thereafter, initially by the Korea Stock Exchange (*KSE*) and subsequently by the Korean Corporate Governance Service (*KCGS*). Survey results are available through year-end 2004.¹
- We hand-collect the data needed to construct *KCGI* for 1998–2000. To reduce the cost of hand-collection, we generally assume that firms which lacked a governance element in year X also lacked this element in previous years. For example, we assume that a firm with no audit committee in 2001 had no audit committee in prior years. We hand-collect data on audit committees for 2000 for firms which had an audit committee in mid-2001; collect data for 1999 for firms which had an audit committee in 2000, and so on.

For the principal board structure and board committee variables we study in this paper, we have full results for the entire sample period, from a combination of hand-collection and the *KCGS* surveys. We also have full results for share ownership. In constructing the rest of *KCGI*, we face some important challenges. We can use only elements which are available in each year. However, *KCGS* has changed its survey each year, adding some questions, dropping

¹ English translations of the KSE and KCGS governance surveys are available from the authors on request.
others, rephrasing clear questions to make them ambiguous or simply not comparable to prior years, and sometimes switching from (likely reliable) survey responses to (unreliable) efforts to assess governance elements based on firms' public disclosures, for elements for which public disclosure is not required.

We reduce loss of governance elements due to changes in the survey in several ways. For some elements, we hand-collect data from annual reports, charters, proxy statements, company websites, and other sources. For elements for which KCGS changed its collection method from relying on survey responses to relying on public disclosures, we assume either that a firm which had a governance element in year X also had it in year X+1, or that a firm which lacked a governance element in year X+1 also lacked this element in year X, as seemed appropriate for each governance element.

For governance elements that became legally required during the sample period, we assume that firms comply with these requirements. For example, we assume that large firms and chaebol-affiliated firms require board approval of related-party transactions when this became legally required (for firms in the top 10 chaebol in 2000, for large firms and firms in the top-30 chaebol in 2001, and for firms in business groups with group assets over 2 trillion won in 2002).

Where data on a governance element is missing in a particular year and hand-collection is too costly or data is not publicly available, we extrapolate forward or backward from year X to year X+1 or X-1. This "element extrapolation" is necessary to construct KCGI for 1998-2000. We believe that element extrapolation is reasonably innocuous in our study because firm random effects and firm fixed effects specifications control for a time-invariant firm-level effect, so that only changes in governance within firms over time should matter. More generally, extrapolation, done with error (compared to the unobserved true state) will add noise to our results, but should not create bias.

If KCGS asked a survey question in, say, 2001 and 2003, but not in 2002, we construct values for that governance element for 2002 by averaging the 2001 and 2003 values ("element
interpolation"). If a firm responded to the KCGS survey in, say, 2001 and 2003, but not in 2002, we construct values for this firm for 2002 by averaging the 2001 and 2003 values ("firm interpolation"). In robustness checks, we obtain similar results if we do not interpolate for elements or firms.

Data on other variables comes from various sources. We take balance sheet, income, cash flow statement data, foreign ownership data, and original listing year from the TS2000 database maintained by the KLCA; a list of companies affiliated with the top-30 chaebol from press releases by the Korean Fair Trade Commission (KFTC); stock market data from the KSE; information on ADRs from JP Morgan and Citibank websites; and industry classification from the Korea Statistics Office (KSO).

Table 1 provides details on how we obtain each element for each year. Table 2 provides summary statistics on KCGI and the board-related indices and elements we study in this paper, separately for all firms, large firms, and small firms. Table 3, Panel A defines the principal variables we study in this paper; Panel B provides summary statistics for the principal independent variables.

4. Methodology

4.1 Pooled OLS, Firm Random Effects, and Firm Fixed Effects Specifications

In this paper, we rely on three principal approaches: First, we conduct firm fixed effects regressions with year dummies for the full 1998-2004 period. We also report selected results for pooled OLS and firm random effects specifications, partly for comparison with the firm fixed effects results, and partly because our two stages least squares (2SLS) analysis is limited to pooled OLS and firm random effects specifications. Pooled OLS results use firm clusters to allow for within-firm temporal correlation between residuals. All regressions use year dummies (to allow for spatial correlation of residuals) and Rogers' (1993) robust standard errors.

A Breusch-Pagan (1980) Lagrange multiplier test rejects pooled OLS model compared to the alternative of firm random effects, with a \(p \)-value close to zero. The choice between random and fixed effects specifications is a closer one. The fixed effects model has the advantage,
compared to random effects, of not requiring that the firm effect be uncorrelated with the independent variables. It has the disadvantage of using only information from within-firm variation, while random effects can also use information from between-firm differences. We conduct Hausman’s (1987) test for whether a random effects model is acceptable against the alternative of a fixed effects model. For our sample, this test usually, but not always, rejects random effects. Thus, random effects coefficients may be biased relative to fixed effects coefficients, but hopefully not severely so. In practice, random effects and fixed effects results are similar.

We consider but reject the Fama-MacBeth procedure (Fama and MacBeth, 1973), which is commonly used in finance research.2 In this procedure, pooled standard errors are computed from cross-sectional coefficients estimated year-by-year. This approach works well if residuals are spatially correlated but not temporally correlated. When residuals are temporally correlated, the standard errors will be downward biased. To address this problem, some studies adjust Fama-MacBeth standard errors in various ways, to address the serial correlation between the yearly estimated coefficients. However, Petersen (2004) finds that these adjustments do not correct for the bias.

The importance of controlling for unobserved firm characteristics in a corporate governance study is well understood. Nonetheless, all prior work on board structure employs either pure cross-sectional data, or at best OLS regressions with pooled panel data, typically with year dummies (e.g., Choi, Park and Yoo, 2007). The principal reasons are lack of time-series data and lack of time variation in governance. Especially in developed countries, board structure typically changes slowly over time.

In Korea, in contrast, outside directors were rare prior to the East Asian financial crisis, but were rapidly adopted thereafter. These changes were initially in response both to the legal rules

2 According to Petersen (2004), among all finance papers using panel data and published in JF, JFE, and RFS in 2001-2004, 34 percent use the Fama-MacBeth procedure. This is followed by papers that use year dummy variables (31%), clustered standard errors (22%), and Newey-West adjusted standard errors (7%). The remaining 45 percent of the papers do not adjust standard errors for either spatial or temporal correlation between the residuals.

http://law.bepress.com/alea/17th/art52
adopted in the second half of 1999 and to investor pressure. Thereafter, it is possible that the prospect of the share price benefits we document below prompted some firms to voluntarily change their board structures. Audit committees, too, were rare prior to the crisis, but have since been adopted by a significant number of firms. At year-end 1998, only a few SOE’s and banks had 50% outside directors, an audit committee, or an outside director nominating committee. By the end of our sample period, 66 large firms and banks in our sample had all three governance elements. An additional 44 firms had voluntarily adopted 50% outside directors, 67 firms had voluntarily adopted audit committees, and 90 firms had voluntarily adopted an outside director nominating committees. These large changes make it feasible to implement a firm fixed effects specification.

A comparison of our pooled OLS and firm fixed effects results confirms the existence of large differences between the two approaches. For example, in the last panel of Table 9, elements b_2 (> 50% outside directors) and b_4 (audit committee) have small, insignificant coefficients, in the pooled OLS specification, but have substantially larger and statistically significant coefficients with firm fixed effects. (All references in this paper to statistical significance are to significance at the 5% level in a two-tailed test.) Conversely, element b_5 (compensation committee) is significant in pooled OLS, but weakens and becomes insignificant with firm fixed effects. These results support theoretical doubts about the reliability of OLS estimates in corporate governance research, and underscore the importance of more robust estimation procedures.

4.2 Omitted Variable Bias and Endogeneity

A central methodological concern for this study is endogeneity, especially reverse causality, in which firm value predicts governance, not vice versa. To address this issue, we employ instrumental variable analysis, using an asset size dummy at 2 trillion won as an instrument for Board Structure Index. This instrument relies on legal rules adopted in the second half of 1999, which require "large" firms (book value of assets > 2 trillion won, approximately $2 billion) and
banks to have 50% outside directors, an audit committee, and an outside director nominating committee. This law also requires smaller public firms to have 25% outside directors.³

We limit the instrumental variable analysis to 1999-2004 because asset size dummy is not an appropriate instrument in 1998, prior to adoption of these rules. We confirm in unreported regressions that asset size dummy predicts Tobin's q beginning at year-end 1999, but not before. Table 1 indicates which governance elements were legally required, for which firms, in which year. We are also limited to pooled regressions and firm random effects specifications, because asset size dummy is firm-specific and almost time-invariant. Thus, it cannot be used in a fixed effects framework.

A valid instrument must be exogenous, correlated with the instrumented variable (Board Structure Index), and should predict the dependent variable (ln(Tobin's q)) only indirectly, through the instrumented variable, and not directly. First, asset size dummy is likely to be exogenous. The governance rules that apply to large firms are mandatory and not subject to firm choice. There is no evidence that the size threshold corresponds to voluntary firm behavior prior to adoption of the rules, or that firms reduce or limit their size to avoid compliance with the rules. In particular, if firms shrink below 2 trillion won in assets to avoid compliance with governance rules, rather than because of business reversals, one would expect them to cease compliance. Instead, of 7 firms that were required to comply with the large firm rules during 2001 or 2002, but then fell below the 2 trillion won threshold, 4 retain an outside director nominating committee, 5 retain 50% outside directors, and all 7 retain an audit committee.⁴

Second, asset size dummy correlates strongly with Board Structure Index (r = 0.73). This is expected since Board Structure Index includes the three governance elements (50% outside directors, an audit committee, and an outside director nominating committee).

³ Banks must comply with the same outside director and audit committee rules as large firms. They are subject to a special director nomination rule, but until July 2002 they were exempt from the outside director nomination committee rule that applies to large firms. We treat the nomination rules that apply to banks as equivalent to having an outside director nominating committee.

⁴ [to be updated with 2004 data]
directors, audit committee, and outside director nominating committee) which are required for large firms.

The more troublesome question is whether asset size dummy predicts Tobin's q directly, or only indirectly through Board Structure Index. After all, firm size could (and indeed does) directly predict Tobin's q. We address this issue by employing regression discontinuity analysis, adapted from labor economics (Angrist and Lavy, 1999), in which we separately control for the continuous effect of $\ln(\text{assets})$ on Tobin's q. This procedure hopefully separates the discontinuous impact on Tobin's q of the governance change at 2 trillion won from the direct link between firm size and Tobin’s q. For further analysis of the suitability of this instrument, see Black, Jang and Kim (2006).

A further reason for believing that the asset size dummy is reasonably reliable is that the direct effect of $\ln(\text{assets})$ on Tobin's q is negative and statistically significant, while the effect of asset size dummy is significant and positive. It would be a remarkable coincidence if $\ln(\text{assets})$ were to predict lower Tobin's q in general, yet also predict a large jump in Tobin's q at precisely the 2 trillion won point where governance rules kick in, for reasons other than its effect on governance. [to come: results for $\ln(\text{assets})$ separately below and above 2 trillion won]. It would stretch coincidence quite a bit further for the positive effect of size on governance at 2 trillion won to appear at precisely the time (second half of 1999) when the governance rules were adopted.

We conduct the Durbin-Wu-Hausman test for endogeneity (Davidson and MacKinnon, 1993, Wooldridge, 2000). The Durbin-Wu-Hausman test procedure is similar to 2SLS. In the first stage, we regress Board Structure Index on asset size dummy and other control variables. In the second stage, we regress Tobin’s q on Board Structure Index, control variables, and the residual from the first-stage regression. A significant coefficient on the first-stage residual is evidence of endogeneity. The coefficient on Board Structure Subindex is identical to the 2SLS coefficient.
The Durbin-Wu-Hausman test for endogeneity rejects the existence of endogeneity (see Table 12, Panel A) and the 2SLS regression gives results similar to those of our pooled regressions, though with a somewhat larger coefficient on instrumented-Board Structure Index.

4.3 Difference-in-Difference Analysis

Our third principal methodological approach is difference in difference estimation. If investors assign higher value to firms with 50% outside directors and an audit committee, then large firms and banks should experience an increase in Tobin's q when the legal rules requiring these governance elements are adopted. The effect should be realized primarily when the rules are adopted, not at the later date when they come into force (in 2000 and 2001, depending on the specific rule).

To assess whether this increase is realized, at the correct time, we employ difference in difference analysis, with large firms, banks, and SOEs as the treatment group, and other firms as the control group. Figure 3 reports differences in means between the treatment and control groups; Table 7 reports regression results for firms which are required to adopt 50% outside directors, audit committee and nominating committee ("required adopters") and for firms which voluntarily adopt 50% outside directors ("voluntary adopters"). The regression specification is:

\[
\ln(\text{Tobin's } q)_{it} - \ln(\text{Tobin's } q)_{t,1999} = \alpha + \beta D_{it}^{R} + \sum_{t=\text{Dec.1999}}^{\text{Dec.2004}} \gamma_{t} D_{it}^{R} D_{jt} + \sum_{t=\text{Dec.1999}}^{\text{Dec.2004}} \lambda_{t} D_{it}^{V} D_{jt} + \sum_{i=1}^{N} u_{i} D_{jt} + \sum_{t=\text{Dec.1999}}^{\text{Dec.2004}} \nu_{t} D_{jt} + \varepsilon_{jt}
\]

Here:

- \(D_{it}^{R} \) is a dummy variable that captures the required adopters. It is coded 1 if firm \(i \) is required to have 50% outside directors, audit committee and outside director nominating committee at period \(t \) and 0 otherwise.
- \(D_{it}^{V} \) is a dummy variable that captures the voluntary adopters. It is coded 1 if firm \(i \) voluntarily adopts 50% outside director ratio at period \(t \) and 0 otherwise.
- \(D_{jt} \) is a period-specific dummy variable (at 6-month intervals, beginning Dec. 1999). It is coded 1 if the indicated period is \(t \) and 0 otherwise.
- \(D_{jt} \) is a firm-specific dummy variable coded 1 if the indicated firm is \(i \) and 0 otherwise.
We include D_{tt}^{R} in the regression because even in the base date of June 30, 1999 there are firms with $D_{tt}^{R}=1$. γ, and λ, are the coefficients of interest. If they are positive and significant, it indicates that treatments – the three governance requirements – had an effect. The predicted effect is indeed observed, beginning in the second half of 1999. The mean Tobin's q of the treatment group jumps by around 0.25 in the second half of 1999, and is roughly stable both before and after this period. This effect is economically large. For a firm with median Tobin's q (0.91 at June 30, 1999), leverage (debt/assets), and (market value of equity/assets), a 0.25 increase is implies a 106 percent increase in share price.\footnote{As of mid-1999, the median value of (debt/assets) is 0.52 and the median value of (market value of equity/assets) is 0.31. To make Tobin's q increase from 0.91 to 1.16 (a 0.25 increase), market value of equity must increase by 106 percent.}

A potential concern with the difference-in-difference approach is that the treatment and control groups could be different in ways that otherwise predict share price. These differences could, by coincidence, drive the treatment effect that we observe in the second half of 1999. To address this possibility, our regression analysis controls for firm fixed effects. We obtain similar results (not reported) with a full set of control variables. [[to come, results with industry adjusted Tobin's q, as an alternative to industry controls]]

4.4 Control Variables

Firm fixed effects can control for omitted variable bias that might arise from time-invariant factors that predict both board structure and Tobin's q. To capture time-varying factors that might predict both board structure and Tobin's q, We employ an extensive list of control variables to limit the possibility of omitted variable bias. The rationale for each control variable is described briefly below.

As noted earlier, different aspects of governance often correlate with each other. For example, firms that change their board structure may also change board procedures. Firms that adopt independent boards may be more likely to adopt good disclosure practices. And so on. We address this possibility by controlling in all regressions for the portion of KCGI that is not captured by the principal independent variables. Thus, in regressions with Board Structure

\[
\text{Hosted by The Berkeley Electronic Press}
\]
Index as the principal independent variable, we control for (KCGI - Board Structure Index). In regressions with Board Independence Subindex as the principal independent variable, we control for (KCGI - Board Independence Subindex). And so on.

Since both board structure and Tobin’s q may reflect industry factors, we include industry dummies based on 4-digit Korea Standard Industrial Classification (KSIC) codes. Industry dummies are not available in the firm fixed effects model because they are perfectly collinear with firm dummy variables.

As discussed above, we use $ln(assets)$ to control for the direct effect of firm size on Tobin’s q. We include $ln(years$ listed) as a proxy for firm age, because younger firms are likely to be faster-growing and perhaps more intangible asset-intensive, which can lead to higher Tobin’s q. We include leverage (measured as debt/market value of common equity) because it can influence Tobin’s q by providing tax benefits and reducing free cash flow problems.

We control for firms' growth prospects using geometric average sales growth over the past five years and capital expenditures relative to the historical capital stock (capex/PPE). We control for intangible assets using (R&D expense)/sales and (advertising expense)/sales. As a measure of capital intensity, we include PPE/sales and (PPE/sales)2. We control for profitability measured by $EBIT/sales$. As measures possibly related to profitability or product market constraints, we include exports/sales and market share. Korean policy, especially prior to the East Asian financial crisis, favored export industries; this could affect profitability and Tobin’s q.

We include share turnover (traded shares as a percentage of public float) as a measure of liquidity, since share prices may be higher for firms with more easily traded shares. We measure ownership as ownership by the largest single shareholder, and include ownership2 to allow for possible nonlinearity in the relationship between inside ownership and share prices. We include a chaebol dummy because firms that belong to a chaebol group may have stronger political connections, access to financing, or be more diversified, which could affect Tobin’s q.

We include fraction of foreign ownership because foreign investors are diversified and may be willing to pay higher prices than domestic investors, thus affecting Tobin’s q. They may also
pressure firms to improve their governance, or invest in better governed firms. We also include
ADR dummies, which can proxy for foreign investor interest, liquidity, and compliance with U.S.
disclosure standards. Firms with level 1 ADRs are traded on NASDAQ but are not subject to
U.S. disclosure rules. Firms with level 2 or 3 ADRs must comply with U.S. accounting and
disclosure rules. Other studies report that firms with level 2 or 3 ADRs have higher Tobin’s q
(Doidge, Karolyi, and Stulz, 2004). We include a dummy variable for a firm's inclusion in the
Morgan Stanley Capital International Index for East Asia (MSCI dummy), which may proxy for
price pressure due to purchases by index funds, greater liquidity, and foreign investor interest.
We include a bank dummy because banks face special regulation under the Banking Act.

4.5 Outliers
The raw distributions of Tobin's q, market/book and market/sales are highly skewed. To reduce
the effect of outlier observations, we take logs of these variables. We also identify and drop
outliers for each year based on a studentized residual obtained from a regression of \(\ln(\text{Tobin's } q) \)
(or market/book or market/sales) on the principal independent variable is greater than ±1.96. In
robustness checks, we obtain similar results if we do not exclude outliers and if we use Tobin's q
rather than \(\ln(\text{Tobin's } q) \) as a dependent variable.

5. Results

5.1 Pooled OLS, Firm Random Effects, and Firm Fixed Effects Results
In Table 5, we show the results of pooled OLS (using firm-clustered standard errors), firm
random effects, and firm fixed effects (using unbalanced and balanced panels) models where
\(\ln(\text{Tobin’s } q) \) is the dependent variable and Board Structure Index is the principal right-hand side
variable. Remaining parts of \(KCGI (KCGI – \text{Board Structure Index}) \) and various firm-level
variables are used as controls. The coefficients on Board Structure are positive and significant
in all four models. The magnitude of the coefficients is also economically meaningful. The
worst-to-best improvement in Board Structure Index (from 0 to 20) increases \(\ln(\text{Tobin’s } q) \) by
0.2040, which is equivalent to an increase of Tobin’s q by 0.1810 at its median value (0.80).
This is also equivalent to a share price increase of 173 percent at the median values of (debt/assets) and (market value of equity/assets).6

6 In the pooled sample, the median value of (debt/assets) is 0.47 and the median value of (market value of equity/assets) is 0.19.
Another observation is that the impact of (KCGI – Board Structure Index) is less robust compared to that of Board Structure Index. In Table 5, the coefficients on (KCGI – Board Structure Index) are positive and significant in pooled OLS and firm random effects models, but insignificant in firm fixed effects models.

5.2 Difference-in-Difference Results

Table 6 shows the result of difference-in-difference test using semiannual data. June 30, 1999 is the base date without treatment. Subsequent period from December 31, 1999 to December 31, 2004 is the treatment period. We use firm fixed effects model to control for any unobserved time-invariant heterogeneity between the treatment and the control group. The first two columns report the coefficients on interaction terms between the required dummy (or the voluntary dummy) and the period dummies. The next three columns report the number of required and voluntary adopters.

The table shows that the coefficients on the interactive terms for require adopters are always positive and statistically significant, indicating that the legal requirement to have at least 50% outside director ratio improved Tobin’s q. The coefficient ranges between 0.1256 and 0.3184. A coefficient of 0.2497 in year-end 2003 means that the change in ln(Tobin’s q) between June 30, 1999 and December 31, 2003 is greater for the required adopters by 0.2497 compared to the change for the non-adopters. This is equivalent to an increase of Tobin’s q by 0.2581 at its median value in June 30, 1999 (0.91). Notice that the 0.2581 improvement is approximately the same as the improvement we can observe from Figure 3. A rise of Tobin’s q by 0.2581 is also equivalent to a share price increase of 109 percent at the median values of (debt/assets) and (market value of equity/assets).7

The impact of voluntary adoption, however, is not robust. The coefficients on the interactive terms are significant only four out of eleven periods. The magnitude of the coefficient, however, is not trivial. A coefficient of 0.0861 in year-end 2003 means that the

7 As of mid-1999, the median value of (debt/assets) is 0.52 and the median value of (market value of equity/assets) is 0.31. To make Tobin’s q increase from 0.91 to 1.17 (a 0.2581 increase), market value of equity must increase by 109 percent.
change in $ln(Tobin\text{'}s \ q)$ between June 30, 1999 and December 31, 2003 is greater for the voluntary adopters by 0.0861 compared to the change for the non-adopters. This is equivalent to an increase of Tobin’s q by 0.0818 at its median value in June 30, 1999 (0.91). A rise of Tobin’s q by 0.0818 is also equivalent to a share price increase of 52 percent at the median values of (debt/assets) and (market value of equity/assets). This is roughly half the size of the impact from required adoption.

These results are robust to different data frequencies (yearly data), different specifications (using $ln(Tobin\text{'}s \ q)$, instead of a difference in $ln(Tobin\text{'}s \ q)$ as dependent variable).

5.3 Instrumental Variable Results

Table 7 reports the results of Durban-Wu-Hausman test (Panel A) and the results of 2SLS (Panel B), where Board Structure Index is endogenized and asset size dummy is used as the instrumental variable. The Durban-Wu-Hausman test result in Panel A shows that the coefficient on the residuals obtained from the first stage regression is insignificant in the second stage regression, failing to reject the null of no endogeneity. This result is robust to the inclusion of ($KCGI – Board \ Structure \ Index$).

In Panel B, we run 2SLS using pooled OLS and random effects models, with and without ($KCGI – Board \ Structure \ Index$). It shows that the coefficients on the fitted values in the second stage regressions are all positive and statistically significant, indicating that the causality does run from Board Structure to firm value. Also notice that the coefficients in 2SLS results are larger than those from single equation models in Table 5. In case of the model using random effects with ($KCGI – Board \ Structure \ Index$), the coefficient is 0.0153, which is greater than the coefficient of 0.0112 from the random effects model in Table 5. The 3SLS results, which we do not report here, confirms that causality do run from Board Structure Index to $ln(Tobin\text{'}s \ q)$. When instrumenting board structure with asset size dummy, and instrumenting $ln(Tobin\text{'}s \ q)$ with R&D expenditure over sales and advertisement expenditure over sales, we find that causality runs in both ways.

5.4 Results on Sub-Indices and Elements
Table 8 reports results on Board Independence and Board Committee Subindices and their individual elements using pooled OLS (with firm-clustered standard errors), firm random effects, and firm fixed effects models (unbalanced). It basically shows that, even under the firm fixed effects model, both subindices have a significant impact on \(\ln(Tobin's \ q) \). Between the two subindices, one can see that the impact from Board Independence Subindex is dominant. The coefficient on Board Independence Subindex is 0.0125, while the coefficient on Board Committee Subindex is 0.0071.

When the subindices are broken down into individual elements, however, some of the elements lose their statistical significance. When all five elements are included in the same regression, three elements (50% outside director ratio, >50% outside director ratio, and audit committee) remain significant while the other two turn insignificant (nominating committee and compensation committee). Among the three, b1 (50% outside director ratio) is the most significant.

Table 9 investigates whether the presence of foreign directors in the board increases firm value using the firm fixed effects model. When we regress \(\ln(Tobin’s \ q) \) on the foreign director dummy (element c7) with controls for rest of KCGI and other control variables, the coefficient on the foreign director dummy is negative and statically significant. This is in contrast to the findings in Choi, Park, and Yoo (2006), Choi and Hasan (2005), and Oxelheim and Randøy (2003). Here we do not claim that the presence of foreign directors decrease firm value. The causality might be running in the opposite direction. It could be that poorly performing firms are more likely to appoint foreign directors.

However, when we include Board Independence Subindex and also interact this subindex with the foreign director dummy, we uncover an interesting result. The coefficient on the interaction term is positive and statistically significant even when controlling for the rest of KCGI and other control variables. This suggests that foreign directors do increase firm value at independent boards, but not in dependent boards. Coefficient values suggest that in boards with
more than 50% outside director ratio, a presence of foreign director increases \(\ln(\text{Tobin’s } q) \) by 0.075

Table 10 shows results on an alternative board element, \(b_0 \), defined as the fraction of outside directors. Results indicate that the fraction of outside directors is strongly associated with firm value (see Panel i). But, between the required floor of 25 percent and 50 percent, firm value does not seem to vary with the fraction of outside directors. When we include \(b_0 \) and \(b_1 \) together in the same regression (Panel ii), the coefficient on \(b_0 \) loses its significance. We find similar results when we replace \(b_0 \) with \(b \)-below, which is defined as \(\min[2 \times \text{fraction of outside directors}, 1] \) as in Panel iii. When we focus on the subsample of firms with less than 50 percent outside director ratio, we will do not find significant result for the fraction of outside directors.

5.5 Robustness Checks

In *Tables 11, 12, and 13*, we conduct a number of robustness checks. In *Table 11* shows the year-by-year *OLS* results using the same set of control variables. The coefficient on Board Structure Index is positive throughout the sample period, but significant only since 2000, which is immediately after the regulation on outside director ratio and board committees came into effect. Also notice that the magnitude of the yearly coefficients is stable over time, ranging between 0.0094 and 0.0134. The coefficients on \((\text{KCGI} – \text{Board Structure Index}) \), however, are only marginal significant in some years, while the coefficients on Board Structure Index is significant throughout the sample period.

In *Table 12*, we show results for various samples: (i) banks and non-banks, (ii) regulated firms (financial firms and SOEs) vs. non-regulated firms, (iii) Chaebol firms vs. non-Chaebol firms, (iv) large firms vs. small firms, and (v) manufacturing firms vs. non-manufacturing firms. We find that our major board variables (Board Structure Index, Board Independence Subindex, Board Committee Subindex, \(b_1 \), and \(b_2 \)) are significant within most of the subsamples. The exceptions include the subsamples of banks and large firms, a group of firms that have relatively small within-group variation.
In Table 13, we use alternative measures of firm value: $\ln(\text{market/book})$ and $\ln(\text{market/sales})$. The table shows that our findings in previous subsections remain for Board Structure Index, Board Independence Subindex, b1, and b2. Board Committee Subindex is no longer statistically significant when $\ln(\text{market/book})$ or $\ln(\text{market/sales})$ are used as the measure of firm value.

6. Conclusion

Outside directors and audit committees are widely considered to be central elements of good corporate governance. Yet evidence to support this conventional wisdom is limited. Prior work on the connection between board composition and committee structure and overall firm value or performance relies principally on cross-sectional data. Most of this work finds little association between these governance elements and shares prices or overall firm performance. Even when an association is found, causation is unclear. Performance could predict board composition and committee structure, rather than vice-versa, or optimal board composition and committee structure could be endogenous to other firm characteristics.

Korea provides a unique laboratory for addressing these empirical issues. Based on a combination of time-series results with firm fixed effects, an instrumental variable that relies on unique features of Korean law to instrument for board structure, and difference-in-difference estimation, we report evidence consistent with a positive share price impact of boards with 50% or greater outside directors, and weaker evidence of a positive impact from creation of an audit committee. For board composition, this apparent value exists both for firms which are required by law to have 50% outside directors and for firms which voluntarily adopt this practice. Differences between OLS and firm fixed effects results are sometimes large, confirming the unreliability of OLS estimates.
References

Figure 1: Change in Board Independence and Board Committees Over Time

Figures show mean values of Board Independence Subindex (0–10), Board Committees Subindex (0–10), and remainder of Korean Corporate Governance Index (0–80) from year-end 1998 through year-end 2004, for balanced panels of large Korean public firms (assets > 2 trillion won) and small Korean public firms, respectively.

Large Firms (balanced panel, 33 firms)

Small Firms (balanced panel, 219 firms)
Figure 2: Board Structure Histograms

Fraction of firms with indicated scores for Board Independence and Board Committee Subindices at year-end 1998 and 2004 for small firm (n = 445 in 2004, 443 in 1998) and large firms (n = 67 in 2004, 68 in 1998).

A. Small Firms

Board Structure

Board Independence

Board Committee
B. Large Firms

Board Structure

Board Independence

Board Committees
Figure 3: Difference in Tobin’s q: Firms with 50% Outside Directors versus Other Firms

Solid line: (mean Tobin’s q for 53 firms which are required to have 50% outside directors under rules proposed in September 1999) - (mean Tobin’s q for other firms), at indicated dates. Dashed line: Mean Tobin’s q for “voluntary adopter” firms which have 50% outside directors although not required to do so) - (mean Tobin’s q for other firms). Number of voluntary adopters is 0 in 1998; varies from 4 in 1999 to 19 in 2004. Sample is balanced panel of 261 firms with data on Tobin’s q for entire period.
Table 1: Construction of KCGI, 1998-2004

This table shows (i) the governance elements used to construct KCGI, (ii) data sources; and (iii) the rules we use to fill in missing information. Element labels are consistent with Black, Jang, and Kim (2006) (shown in mid-2001 column). There are three different data sources: (i) hand-collected director database, ownership database, and other information, and (ii) annual surveys by the Korea Corporate Governance Service beginning spring 2001. Survey dates are conducted in spring of each year and provide end-of-prior-year information, except as shown. We extrapolate for missing elements using the following rules: (i) if an element is available in year X, but not in year X+1 (X-1), we extrapolate year X value to year X+1 (X-1). We interpolate for missing firms and missing elements using the following rules applied sequentially: (i) if a firm answers the KCGS survey in years X and X+2, but not year X+1, we use in year X+1 the average of the X and X+2 values; and (ii) if an element is available in years X and X+2, but not year X+1, we use in year X+1 the average of the X and X+2 values. We assume elements are present if they are legally required. Large firm rules also apply to banks. Italicics indicate legally required elements.

For hand-collected values, we generally collect values in year X only for firms which had this governance element in year X+1. Thus, for compensation committee, we have KCGS data starting in 2002. We hand collect data for 2001 for the firms which had this committee in 2002, collect data for 2000 for the firms which had this committee in 2001, etc. For some elements, a change in KCGS methodology led to inconsistency between responses for different years. For these questions, we either replace a 1 value in year X with 0 if the X+1 value is 0, or replace a 0 value in year X with 1 if the X+1 value was 1, as seemed appropriate given the nature of the element. Details on these and other adjustments to the KCGS raw data are available from the authors on request.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Shareholder Rights Index (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm permits cumulative voting for election of directors.</td>
<td>hand-collect</td>
<td>A1</td>
<td>I-3-①</td>
<td>1-(16)</td>
<td>1-A-(4)</td>
<td>1-A-(4)</td>
</tr>
<tr>
<td>Firm permits voting by mail.</td>
<td>hand-collect</td>
<td>A2</td>
<td>I-3-②</td>
<td>1-(17)</td>
<td>1-A-(5)</td>
<td>1-A-(5)</td>
</tr>
<tr>
<td>Firm discloses director candidates to shareholders in advance of shareholder meeting.</td>
<td>hand-collect</td>
<td>A4</td>
<td>I-9-②</td>
<td>required</td>
<td>required</td>
<td>required</td>
</tr>
<tr>
<td>Board approval required for related party transactions (required 2000 for top 10 chaebol, mid-2001 for all chaebol, 2001 on for large and chaebol firms)</td>
<td>hand-collect</td>
<td>A5</td>
<td>II-2-6-①</td>
<td>same as 2001</td>
<td>same as 2001</td>
<td>same as 2001</td>
</tr>
</tbody>
</table>

Board Structure Index (B)						
Firm has at least 50% outside directors (required beginning mid-2001 for large firms)	director database	B1	I-2-①, II-2-1	director database	2-A-(1)	2-A-(1)
Firm has more than 50% outside directors (director database except as indicated)	director database	B2	I-2-①, II-2-1	1 for large firms if 1 in 2003 or 2-A-(1) ≥ 2	2-A-(1) for large firms	2-A-(1) for large firms
Firm has outside director nominating committee (required from mid-2001 for large firms).	hand-collect	B3	II-3-4	2-B-(12), 2-B-(13)	2-A-(9)	2-A-(9)
Audit committee of the board of directors exists (required from mid-2001 for large firm)	hand-collect	B4	I-6-③	4-(1)	4-(1)	4-(1)
firm has compensation committee	hand-collect	hand-collect	hand-collect	hand-collect	2-A-(10)	2-A-(10)

<p>| Board Procedure Index (C) | | | | | | |</p>
<table>
<thead>
<tr>
<th>Directors’ positions on board meeting agenda items are recorded in board minutes</th>
<th>hand-collect</th>
<th>C2</th>
<th>II-2-6-①</th>
<th>2-B-(4)</th>
<th>2-B-(21)</th>
<th>same as 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board chairman is an outside director or (from 2003) firm has outside director as lead director.</td>
<td>0 firms</td>
<td>C3 (0 firms)</td>
<td>hand collect</td>
<td>hand collect</td>
<td>2-A-(5)</td>
<td>2-A-(5)</td>
</tr>
<tr>
<td>A system for evaluating directors exists.</td>
<td>hand-collect</td>
<td>C4</td>
<td>II-2-6-⑩</td>
<td>same as 2001</td>
<td>2-B-(39)</td>
<td>2-B-(34)</td>
</tr>
<tr>
<td>A bylaw to govern board meetings exists.</td>
<td>hand-collect</td>
<td>C5</td>
<td>average of mid-2001 and 2003</td>
<td>2-B-(18)</td>
<td>2-B-(16)</td>
<td>same as 2003</td>
</tr>
<tr>
<td>Firm holds four or more regular board meetings per year.</td>
<td>hand-collect</td>
<td>C6</td>
<td>I-4-⑩, II-2-3-⑩</td>
<td>2-B-(1)</td>
<td>2-B-(19)</td>
<td>2-B-(20)</td>
</tr>
<tr>
<td>Firm has one or more foreign outside directors.</td>
<td>hand-collect</td>
<td>C7</td>
<td>director database</td>
<td>2-A-(10)</td>
<td>2-A-(6)</td>
<td>2-A-(6)</td>
</tr>
<tr>
<td>Shareholders approve outside directors’ aggregate pay (separate from all directors’ pay).</td>
<td>hand-collect</td>
<td>C7</td>
<td>II-2-6-⑩</td>
<td>same as mid-2001</td>
<td>2-B-(30)</td>
<td>same as 2003</td>
</tr>
<tr>
<td>Outside directors attend at least 70% of meetings, on average</td>
<td>same as mid-2001</td>
<td>C12</td>
<td>I-1</td>
<td>2-A-(2)</td>
<td>2-B-34</td>
<td>2-B-(30)</td>
</tr>
<tr>
<td>Board meeting solely for outside directors exists.</td>
<td>hand-collect</td>
<td>C15</td>
<td>II-3-15-⑩</td>
<td>2-A-(3)</td>
<td>2-B-(35)</td>
<td>2-B-(31)</td>
</tr>
<tr>
<td>100% outside directors on audit committee</td>
<td>same as mid-2001</td>
<td>D1</td>
<td>II-4-1</td>
<td>4-(2)</td>
<td>4-(2)</td>
<td>4-(2)</td>
</tr>
<tr>
<td>Bylaws governing audit committee (or internal auditor) exist.</td>
<td>hand-collect</td>
<td>D2</td>
<td>average of mid-2001 and 2002</td>
<td>4-(3)</td>
<td>4-(3)</td>
<td>4-(3)</td>
</tr>
<tr>
<td>Audit committee includes person with expertise in accounting</td>
<td>hand-collect</td>
<td>D3</td>
<td>II-4-2</td>
<td>average of 2001 and 2003</td>
<td>4-(10)</td>
<td>4-(11)</td>
</tr>
<tr>
<td>Audit committee (or internal auditor) approves the appointment of the internal audit head.</td>
<td>hand-collect</td>
<td>D5</td>
<td>average of mid-2001 and 2002</td>
<td>4-(4)</td>
<td>4-(4)</td>
<td>4-(5)</td>
</tr>
<tr>
<td>Audit committee meets ≥ 4 times per year</td>
<td>hand-collect</td>
<td>D10</td>
<td>I-6-⑩, II-4-7-⑩</td>
<td>4-(7)</td>
<td>4-(7)</td>
<td>4-(7)</td>
</tr>
</tbody>
</table>

Disclosure Index (E)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm conducted investor relations activity in year 2000</td>
<td>same as mid-2001</td>
<td>E1</td>
<td>II-1-5</td>
<td>3-(1)</td>
<td>3-(1)</td>
<td>3-A-(1)</td>
</tr>
<tr>
<td>Firm website includes resumes of board members</td>
<td>same as mid-2001</td>
<td>E2</td>
<td>average of mid-2001 and 2002</td>
<td>3-(9)</td>
<td>3-(9)</td>
<td>3-B-(21)</td>
</tr>
<tr>
<td>English disclosure exists</td>
<td>same as mid-2001</td>
<td>E3</td>
<td>average of mid-2001 and 2002</td>
<td>3-(15)</td>
<td>3-(14)</td>
<td>3-A-(13)</td>
</tr>
</tbody>
</table>

Ownership Parity (P)

Ownership Parity = (1 - ownership disparity); disparity = ownership by all affiliated shareholders - ownership by controlling shareholder and family members

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ownership database (same as mid-2001 for financial firms)</td>
<td>P (ownership database)</td>
<td>ownership database (same as mid-2001 for financial firms)</td>
<td>ownership database (same as mid-2001 for financial firms)</td>
<td>same as 2002</td>
<td>same as 2002</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Summary Statistics for KCGI, Selected Indices, and Elements

Summary statistics for indicated governance indices and elements. Dates are year-end. Pooled sample size varies from 4,242 to 4,344.

All Firms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KCGI</td>
<td>35.44</td>
<td>33.48</td>
<td>12.69</td>
<td>24.74</td>
<td>31.92</td>
<td>35.82</td>
<td>42.23</td>
</tr>
<tr>
<td>Board Structure Index (BS = BI + BC)</td>
<td>2.44</td>
<td>0.00</td>
<td>4.72</td>
<td>0.36</td>
<td>1.89</td>
<td>2.80</td>
<td>3.33</td>
</tr>
<tr>
<td>Board Independence Subindex (BI=b1 + b2)</td>
<td>1.05</td>
<td>0.00</td>
<td>2.69</td>
<td>0.25</td>
<td>0.84</td>
<td>1.20</td>
<td>1.41</td>
</tr>
<tr>
<td>b0 (fraction of outside directors)</td>
<td>0.30</td>
<td>0.25</td>
<td>0.13</td>
<td>0.14</td>
<td>0.31</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>b1 (50% outside directors dummy)</td>
<td>0.15</td>
<td>0.00</td>
<td>0.35</td>
<td>0.03</td>
<td>0.12</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>b2 (> 50% directors dummy)</td>
<td>0.06</td>
<td>0.00</td>
<td>0.24</td>
<td>0.02</td>
<td>0.05</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>Board Committee Subindex (BC=b3 + b4 + b5)</td>
<td>1.38</td>
<td>0.00</td>
<td>2.55</td>
<td>0.11</td>
<td>1.05</td>
<td>1.60</td>
<td>1.92</td>
</tr>
<tr>
<td>b3 (nominating committee)</td>
<td>0.21</td>
<td>0.00</td>
<td>0.40</td>
<td>0.02</td>
<td>0.12</td>
<td>0.23</td>
<td>0.30</td>
</tr>
<tr>
<td>b4 (audit committee)</td>
<td>0.19</td>
<td>0.00</td>
<td>0.39</td>
<td>0.02</td>
<td>0.16</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>b5 (compensation committee)</td>
<td>0.03</td>
<td>0.00</td>
<td>0.16</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>c7 (foreign director dummy)</td>
<td>0.09</td>
<td>0.00</td>
<td>0.29</td>
<td>0.07</td>
<td>0.10</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Number of firms</td>
<td>4344</td>
<td>4344</td>
<td>4344</td>
<td>535</td>
<td>540</td>
<td>558</td>
<td>659</td>
</tr>
</tbody>
</table>

Large Firms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KCGI</td>
<td>53.94</td>
<td>54.54</td>
<td>16.49</td>
<td>34.00</td>
<td>48.93</td>
<td>56.54</td>
<td>66.85</td>
</tr>
<tr>
<td>Board Structure Index (BS = BI + BC)</td>
<td>10.96</td>
<td>11.67</td>
<td>5.88</td>
<td>2.11</td>
<td>9.72</td>
<td>13.29</td>
<td>14.75</td>
</tr>
<tr>
<td>Board Independence Subindex (BI=b1 + b2)</td>
<td>5.35</td>
<td>5.00</td>
<td>3.93</td>
<td>1.69</td>
<td>4.09</td>
<td>6.30</td>
<td>7.53</td>
</tr>
<tr>
<td>b0 (fraction of outside directors)</td>
<td>0.46</td>
<td>0.50</td>
<td>0.17</td>
<td>0.24</td>
<td>0.47</td>
<td>0.53</td>
<td>0.54</td>
</tr>
<tr>
<td>b1 (50% outside directors dummy)</td>
<td>0.72</td>
<td>1.00</td>
<td>0.45</td>
<td>0.18</td>
<td>0.53</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>b2 (> 50% directors dummy)</td>
<td>0.35</td>
<td>0.00</td>
<td>0.48</td>
<td>0.16</td>
<td>0.29</td>
<td>0.27</td>
<td>0.52</td>
</tr>
<tr>
<td>Board Committee Subindex (BC=b3 + b4 + b5)</td>
<td>5.53</td>
<td>6.67</td>
<td>2.98</td>
<td>0.38</td>
<td>5.63</td>
<td>6.99</td>
<td>7.21</td>
</tr>
<tr>
<td>b3 (nominating committee)</td>
<td>0.79</td>
<td>1.00</td>
<td>0.41</td>
<td>0.09</td>
<td>0.70</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>b4 (audit committee)</td>
<td>0.81</td>
<td>1.00</td>
<td>0.39</td>
<td>0.06</td>
<td>0.88</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>b5 (compensation committee)</td>
<td>0.12</td>
<td>0.00</td>
<td>0.32</td>
<td>0.00</td>
<td>0.10</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>c7 (foreign director dummy)</td>
<td>0.19</td>
<td>0.00</td>
<td>0.39</td>
<td>0.16</td>
<td>0.14</td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>Number of large firms</td>
<td>584</td>
<td>584</td>
<td>584</td>
<td>74</td>
<td>77</td>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

Small Firms

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KCGI</td>
<td>32.77</td>
<td>31.91</td>
<td>9.41</td>
<td>23.46</td>
<td>29.33</td>
<td>32.92</td>
<td>39.25</td>
</tr>
<tr>
<td>Board Structure Index (BS = BI + BC)</td>
<td>1.13</td>
<td>0.00</td>
<td>2.73</td>
<td>0.09</td>
<td>0.59</td>
<td>1.23</td>
<td>1.90</td>
</tr>
<tr>
<td>Board Independence Subindex (BI=b1 + b2)</td>
<td>0.39</td>
<td>0.00</td>
<td>1.64</td>
<td>0.03</td>
<td>0.30</td>
<td>0.43</td>
<td>0.64</td>
</tr>
<tr>
<td>b0 (fraction of outside directors)</td>
<td>0.28</td>
<td>0.25</td>
<td>0.10</td>
<td>0.13</td>
<td>0.29</td>
<td>0.30</td>
<td>0.31</td>
</tr>
<tr>
<td>b1 (50% outside directors dummy)</td>
<td>0.06</td>
<td>0.00</td>
<td>0.24</td>
<td>0.00</td>
<td>0.05</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>b2 (> 50% directors dummy)</td>
<td>0.02</td>
<td>0.00</td>
<td>0.13</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Board Committee Subindex (BC=b3 + b4 + b5)</td>
<td>0.74</td>
<td>0.00</td>
<td>1.74</td>
<td>0.07</td>
<td>0.29</td>
<td>0.79</td>
<td>1.26</td>
</tr>
<tr>
<td>b3 (nominating committee)</td>
<td>0.12</td>
<td>0.00</td>
<td>0.32</td>
<td>0.01</td>
<td>0.03</td>
<td>0.12</td>
<td>0.21</td>
</tr>
<tr>
<td>b4 (audit committee)</td>
<td>0.09</td>
<td>0.00</td>
<td>0.29</td>
<td>0.01</td>
<td>0.05</td>
<td>0.11</td>
<td>0.15</td>
</tr>
<tr>
<td>b5 (compensation committee)</td>
<td>0.01</td>
<td>0.00</td>
<td>0.11</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>c7 (foreign director dummy)</td>
<td>0.08</td>
<td>0.00</td>
<td>0.27</td>
<td>0.06</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Number of small firms</td>
<td>3760</td>
<td>3760</td>
<td>3760</td>
<td>461</td>
<td>463</td>
<td>485</td>
<td>586</td>
</tr>
</tbody>
</table>
Table 3: Principal Variables

Definition and summary statistics for the principal dependent and independent variables used in this paper. Panel A defines each variable. Panel B provides summary statistics. Book asset values are in billion won. Book and market values are measured at year end, except that market values for mid-2001 are measured on the last day of June.

Panel A: Variable Definitions

<table>
<thead>
<tr>
<th>Governance Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCGI</td>
<td>Sum of Board Structure, Shareholder Rights, Board Procedure, Disclosure, and Ownership Parity Indices</td>
</tr>
<tr>
<td>Board Structure Index</td>
<td>Board Structure Subindex + Board Independence Subindex</td>
</tr>
<tr>
<td>Board Independence Subindex</td>
<td>[(b1 + b2)/no. of non-missing values] x 10</td>
</tr>
<tr>
<td>Board Committee Subindex</td>
<td>[(b3 + b4 + b5)/no. of non-missing values] x 10</td>
</tr>
<tr>
<td>b1</td>
<td>1 if firm has at least 50% outside directors, 0 otherwise</td>
</tr>
<tr>
<td>b2</td>
<td>1 if firm has >50% outside directors, 0 otherwise</td>
</tr>
<tr>
<td>b3</td>
<td>1 if firm has outside director nomination committee, 0 otherwise</td>
</tr>
<tr>
<td>b4</td>
<td>1 if firm has audit committee, 0 otherwise</td>
</tr>
<tr>
<td>b5</td>
<td>1 if firm has compensation committee, 0 otherwise</td>
</tr>
<tr>
<td>c7</td>
<td>1 if firm has one or more foreign directors, 0 otherwise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobin’s q</td>
<td>[Market value of assets / Book value of assets] measured at each year-end. Market value of assets is estimated by [book value of debt + book value of preferred stock + market value of common stock].</td>
</tr>
<tr>
<td>Market-to-Book Ratio</td>
<td>[Market value of common stock / Book value of common stock] measured at each year-end. We drop firms with negative book value of common stock.</td>
</tr>
<tr>
<td>Market-to-Sales Ratio</td>
<td>[Market value of common stock / Sales] measured at each year-end.</td>
</tr>
<tr>
<td>Years Listed</td>
<td>Number of years since original listing on Korea Stock Exchange</td>
</tr>
<tr>
<td>Leverage</td>
<td>(Book value of debt)/ (Market value of common stock), winsorized at 1% and 99%</td>
</tr>
<tr>
<td>Sales Growth</td>
<td>Geometric average sales growth during past 5 fiscal years (or available period if < five years). If fiscal year changes, we only keep years which cover a full 12 months.</td>
</tr>
<tr>
<td>R&D/Sales</td>
<td>Ratio of research and development (R&D) expense to sales. Firms with missing data for R&D expense are assumed to have 0 values.</td>
</tr>
<tr>
<td>Advertising/Sales</td>
<td>Ratio of advertising expense to sales. Firms with missing data for advertising expense are assumed to have 0 values.</td>
</tr>
<tr>
<td>Exports/Sales</td>
<td>Ratio of export revenue to sales. Firms with missing data for export revenue are assumed to have 0 values.</td>
</tr>
<tr>
<td>PPE/Sales</td>
<td>Ratio of property, plant, and equipment to sales.</td>
</tr>
<tr>
<td>Capex/PPE</td>
<td>Ratio of capital expenditures to PPE</td>
</tr>
<tr>
<td>EBIT/Sales</td>
<td>Ratio of earnings before interest and taxes to sales.</td>
</tr>
<tr>
<td>Market Share</td>
<td>Firm’s share of total sales by all firms in the same 4-digit industry listed on KSE.</td>
</tr>
<tr>
<td>Share Turnover</td>
<td>[Common shares traded during year / Common shares held by public shareholders]. Denominator = [common shares outstanding x (1 – total affiliated ownership)]</td>
</tr>
<tr>
<td>Foreign Ownership</td>
<td>[Common shares held by foreign investors / common shares outstanding]</td>
</tr>
<tr>
<td>Sole Ownership</td>
<td>[common shares held by controlling shareholder and family members / common shares outstanding]</td>
</tr>
<tr>
<td>Asset Size Dummy</td>
<td>Equals 1 if book value of assets > 2 trillion won at end of prior year, 0 otherwise</td>
</tr>
<tr>
<td>Chaebol Dummy</td>
<td>1 if a member of one of the top-30 business groups (based on total group assets) as of April of each year as identified by Korea Fair Trade Commission; 0 otherwise, excluding former state-owned enterprises.</td>
</tr>
<tr>
<td>Level 1 ADR Dummy</td>
<td>1 if firm has level 1 American Depository Receipts (ADRs); 0 otherwise.</td>
</tr>
<tr>
<td>Level 2/3 ADR Dummy</td>
<td>1 if firm has level 2 or level 3 ADRs; 0 otherwise.</td>
</tr>
<tr>
<td>MSCI Index Dummy</td>
<td>1 if firm is in Morgan Stanley Capital International Index; 0 otherwise</td>
</tr>
<tr>
<td>Bank Dummy</td>
<td>1 if firm is a commercial bank or a merchant bank; 0 otherwise</td>
</tr>
</tbody>
</table>
Panel B: Summary Statistics

<table>
<thead>
<tr>
<th>No of "1" values</th>
<th>Pooled Mean</th>
<th>Med.</th>
<th>Min.</th>
<th>Max.</th>
<th>S.D.</th>
<th>1998 Mean</th>
<th>2000 Mean</th>
<th>2002 Mean</th>
<th>2004 Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobin’s q</td>
<td>0.86</td>
<td>0.21</td>
<td>6.05</td>
<td>0.38</td>
<td>0.93</td>
<td>0.78</td>
<td>0.81</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>ln(Tobin’s q)</td>
<td>-0.21</td>
<td>-1.55</td>
<td>1.80</td>
<td>0.35</td>
<td>-0.11</td>
<td>-0.29</td>
<td>-0.27</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>ln(market/book)</td>
<td>-0.65</td>
<td>-9.23</td>
<td>7.18</td>
<td>0.83</td>
<td>-0.51</td>
<td>-0.99</td>
<td>-0.71</td>
<td>-0.61</td>
<td></td>
</tr>
<tr>
<td>ln(market/sales)</td>
<td>-1.33</td>
<td>-11.49</td>
<td>3.85</td>
<td>1.07</td>
<td>-1.34</td>
<td>-1.70</td>
<td>-1.39</td>
<td>-1.21</td>
<td></td>
</tr>
<tr>
<td>ln(assets)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years Listed</td>
<td>15.33</td>
<td>0.00</td>
<td>48.00</td>
<td>9.69</td>
<td>13.44</td>
<td>14.84</td>
<td>15.87</td>
<td>17.22</td>
<td></td>
</tr>
<tr>
<td>Leverage</td>
<td>33.46</td>
<td>0.01</td>
<td>115000</td>
<td>1763</td>
<td>8.05</td>
<td>11.00</td>
<td>5.14</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>Sales Growth</td>
<td>0.27</td>
<td>-0.65</td>
<td>541.25</td>
<td>8.46</td>
<td>0.13</td>
<td>0.11</td>
<td>1.30</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>R&D/Sales</td>
<td>0.01</td>
<td>0.00</td>
<td>7.69</td>
<td>0.13</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Advertising/Sales</td>
<td>0.01</td>
<td>0.00</td>
<td>0.21</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Exports/Sales</td>
<td>0.27</td>
<td>0.00</td>
<td>1.00</td>
<td>0.30</td>
<td>0.30</td>
<td>0.27</td>
<td>0.23</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>PPE/Sales</td>
<td>0.54</td>
<td>0.00</td>
<td>36.05</td>
<td>1.09</td>
<td>0.54</td>
<td>0.60</td>
<td>0.46</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Capex/PPE</td>
<td>0.14</td>
<td>0.00</td>
<td>7.73</td>
<td>0.20</td>
<td>0.13</td>
<td>0.15</td>
<td>0.14</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>EBIT/Sales</td>
<td>0.04</td>
<td>-30.78</td>
<td>0.97</td>
<td>0.51</td>
<td>0.04</td>
<td>0.05</td>
<td>0.05</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>Market Share</td>
<td>0.06</td>
<td>0.00</td>
<td>1.00</td>
<td>0.16</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Share Turnover</td>
<td>19.46</td>
<td>0.00</td>
<td>20650</td>
<td>473</td>
<td>5.61</td>
<td>7.89</td>
<td>7.72</td>
<td>5.85</td>
<td></td>
</tr>
<tr>
<td>Foreign Ownership</td>
<td>8.27</td>
<td>0.00</td>
<td>94.11</td>
<td>14.47</td>
<td>6.30</td>
<td>7.12</td>
<td>9.15</td>
<td>11.77</td>
<td></td>
</tr>
<tr>
<td>Sole Ownership</td>
<td>20.67</td>
<td>0.00</td>
<td>89.76</td>
<td>16.15</td>
<td>21.64</td>
<td>20.75</td>
<td>21.22</td>
<td>20.53</td>
<td></td>
</tr>
<tr>
<td>Asset Size Dummy</td>
<td>573</td>
<td>0.13</td>
<td>1.00</td>
<td>0.34</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Chaebol Dummy</td>
<td>849</td>
<td>0.20</td>
<td>1.00</td>
<td>0.40</td>
<td>0.23</td>
<td>0.19</td>
<td>0.21</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Level 1 ADR Dummy</td>
<td>135</td>
<td>0.03</td>
<td>1.00</td>
<td>0.17</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Level 2/3 ADR Dummy</td>
<td>39</td>
<td>0.01</td>
<td>1.00</td>
<td>0.10</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>MSCI Index Dummy</td>
<td>503</td>
<td>0.12</td>
<td>1.00</td>
<td>0.32</td>
<td>0.16</td>
<td>0.11</td>
<td>0.13</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Bank Dummy</td>
<td>124</td>
<td>0.03</td>
<td>1.00</td>
<td>0.17</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Correlations

The table below shows selected correlation coefficients which may be relevant in assessing collinearity between variables. All correlations are significant at p = .05 or better.

<table>
<thead>
<tr>
<th>IV</th>
<th>b0</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
<th>b4</th>
<th>b5</th>
<th>BI</th>
<th>BC</th>
<th>BS</th>
<th>KCGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV (asset size dummy)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b0 (fraction outside directors)</td>
<td>0.48</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b1 (50% outside dummy)</td>
<td>0.64</td>
<td>0.73</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b2 (> 50% outside dummy)</td>
<td>0.46</td>
<td>0.59</td>
<td>0.62</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b3 (nomination committee)</td>
<td>0.56</td>
<td>0.54</td>
<td>0.34</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b4 (audit committee)</td>
<td>0.62</td>
<td>0.59</td>
<td>0.39</td>
<td>0.61</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b5 (compensation committee)</td>
<td>0.22</td>
<td>0.24</td>
<td>0.34</td>
<td>0.23</td>
<td>0.23</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Independence Subindex (BI = b1+b2)</td>
<td>0.63</td>
<td>0.75</td>
<td>0.94</td>
<td>0.86</td>
<td>0.51</td>
<td>0.56</td>
<td>0.31</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Committee Subindex (BC = b3+b4+b5)</td>
<td>0.64</td>
<td>0.63</td>
<td>0.45</td>
<td>0.88</td>
<td>0.87</td>
<td>0.45</td>
<td>0.62</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board Structure Index (BS = BI + BC)</td>
<td>0.71</td>
<td>0.72</td>
<td>0.87</td>
<td>0.73</td>
<td>0.77</td>
<td>0.79</td>
<td>0.42</td>
<td>0.90</td>
<td>0.89</td>
<td>1</td>
</tr>
<tr>
<td>KCGI</td>
<td>0.55</td>
<td>0.60</td>
<td>0.61</td>
<td>0.49</td>
<td>0.61</td>
<td>0.61</td>
<td>0.33</td>
<td>0.63</td>
<td>0.70</td>
<td>0.75</td>
</tr>
<tr>
<td>KCGI - BI</td>
<td>0.51</td>
<td>0.54</td>
<td>0.52</td>
<td>0.41</td>
<td>0.53</td>
<td>0.53</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCGI - BC</td>
<td>0.49</td>
<td>0.50</td>
<td>0.50</td>
<td>0.29</td>
<td>0.58</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCGI - BS</td>
<td>0.42</td>
<td>0.49</td>
<td>0.45</td>
<td>0.37</td>
<td>0.46</td>
<td>0.45</td>
<td>0.27</td>
<td>0.56</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>BC - b3</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC - b4</td>
<td>0.55</td>
<td>0.60</td>
<td>0.60</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC - b5</td>
<td>0.66</td>
<td>0.26</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Basic Results for Board Structure Index

Coefficients from regressions of \(\ln(\text{Tobin's } q) \) on Board Structure Index, \((KCGI - \text{Board Structure Index})\), and control variables. Outliers for each year are identified and dropped if the studentized residual from a regression of \(\ln(\text{Tobin's } q) \) on Board Structure Index is greater than \(\pm1.96 \). ADR level 2 dummy and bank dummy are unavailable with firm fixed effects due to lack of within-firm variation over time. *, **, and *** indicate significance at 10%, 5%, and 1% levels. All regressions use year dummies and Rogers' robust standard errors. OLS regressions use firm clusters. \(t \)- or \(z \)-values are reported in parentheses (suppressed for control variables). \(R^2 \) is adjusted \(R^2 \) for \(OLS \), overall \(R^2 \) for random effects, and within \(R^2 \) for fixed effects regressions. Significant results (at 5% level or better) are shown in boldface.

<table>
<thead>
<tr>
<th></th>
<th>Pooled OLS</th>
<th>Random Effects</th>
<th>Fixed Effects (Unbalanced)</th>
<th>Fixed Effects (Balanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Structure Index</td>
<td>0.0128***</td>
<td>0.0112***</td>
<td>0.0102***</td>
<td>0.0095***</td>
</tr>
<tr>
<td></td>
<td>(0.70)</td>
<td>(10.45)</td>
<td>(8.73)</td>
<td>(6.85)</td>
</tr>
<tr>
<td>KCGI - Board Structure Index</td>
<td>0.0042***</td>
<td>0.0018***</td>
<td>0.0007</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>(4.52)</td>
<td>(2.91)</td>
<td>(0.98)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>(\ln(\text{assets}))</td>
<td>-0.0311***</td>
<td>-0.0227***</td>
<td>-0.0503***</td>
<td>-0.0450*</td>
</tr>
<tr>
<td></td>
<td>(3.42)</td>
<td>(4.35)</td>
<td>(3.19)</td>
<td>(1.91)</td>
</tr>
<tr>
<td>(\ln(\text{years listed}))</td>
<td>-0.0480***</td>
<td>-0.0582***</td>
<td>-0.0978***</td>
<td>-0.1746***</td>
</tr>
<tr>
<td></td>
<td>(4.64)</td>
<td>(5.80)</td>
<td>(4.05)</td>
<td>(4.26)</td>
</tr>
<tr>
<td>leverage</td>
<td>-0.0000</td>
<td>-0.0000</td>
<td>-0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.42)</td>
<td>(0.99)</td>
<td>(1.42)</td>
</tr>
<tr>
<td>sales growth</td>
<td>-0.0038***</td>
<td>-0.0034***</td>
<td>-0.0037***</td>
<td>-0.0066</td>
</tr>
<tr>
<td></td>
<td>(5.36)</td>
<td>(4.53)</td>
<td>(2.69)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>(\ln(\text{R&D/sales}))</td>
<td>0.0714***</td>
<td>0.0240***</td>
<td>0.0182*</td>
<td>0.0178*</td>
</tr>
<tr>
<td></td>
<td>(5.62)</td>
<td>(2.07)</td>
<td>(2.29)</td>
<td>(2.23)</td>
</tr>
<tr>
<td>(\ln(\text{advertising/sales}))</td>
<td>1.1413**</td>
<td>0.9582***</td>
<td>0.7862*</td>
<td>0.7170*</td>
</tr>
<tr>
<td></td>
<td>(2.56)</td>
<td>(2.64)</td>
<td>(1.83)</td>
<td>(1.76)</td>
</tr>
<tr>
<td>(\ln(\text{exports/sales}))</td>
<td>-0.0009</td>
<td>-0.0315</td>
<td>-0.0634*</td>
<td>-0.0077</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(1.16)</td>
<td>(1.85)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>(\ln(\text{PPE/sales}))</td>
<td>-0.0384**</td>
<td>-0.0392***</td>
<td>-0.0520***</td>
<td>-0.1858***</td>
</tr>
<tr>
<td></td>
<td>(2.15)</td>
<td>(2.68)</td>
<td>(2.57)</td>
<td>(5.54)</td>
</tr>
<tr>
<td>(\ln(\text{EBIT/sales})) ^2</td>
<td>0.0003</td>
<td>0.0006</td>
<td>0.0010</td>
<td>0.0292***</td>
</tr>
<tr>
<td></td>
<td>(0.40)</td>
<td>(1.07)</td>
<td>(1.56)</td>
<td>(5.22)</td>
</tr>
<tr>
<td>(\ln(\text{capex/PPE}))</td>
<td>0.1106***</td>
<td>0.0646***</td>
<td>0.0513***</td>
<td>0.0870***</td>
</tr>
<tr>
<td></td>
<td>(3.17)</td>
<td>(2.71)</td>
<td>(2.02)</td>
<td>(2.59)</td>
</tr>
<tr>
<td>(\ln(\text{EBIT/sales}))</td>
<td>-0.1229**</td>
<td>-0.0636*</td>
<td>-0.0245</td>
<td>0.0708*</td>
</tr>
<tr>
<td></td>
<td>(2.37)</td>
<td>(1.75)</td>
<td>(0.61)</td>
<td>(1.77)</td>
</tr>
<tr>
<td>market share</td>
<td>0.1054</td>
<td>0.2900***</td>
<td>0.3665***</td>
<td>0.2340</td>
</tr>
<tr>
<td></td>
<td>(1.33)</td>
<td>(3.26)</td>
<td>(3.22)</td>
<td>(1.55)</td>
</tr>
<tr>
<td>share turnover</td>
<td>0.0000***</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>(3.33)</td>
<td>(0.96)</td>
<td>(0.32)</td>
<td>(0.35)</td>
</tr>
<tr>
<td>foreign ownership</td>
<td>0.0027***</td>
<td>0.0027***</td>
<td>0.0027***</td>
<td>0.0035***</td>
</tr>
<tr>
<td></td>
<td>(4.40)</td>
<td>(6.53)</td>
<td>(5.84)</td>
<td>(5.82)</td>
</tr>
<tr>
<td>chaebol dummy</td>
<td>0.0422***</td>
<td>0.0394***</td>
<td>0.0300*</td>
<td>0.0111</td>
</tr>
<tr>
<td></td>
<td>(2.62)</td>
<td>(2.83)</td>
<td>(1.74)</td>
<td>(0.53)</td>
</tr>
<tr>
<td>sole ownership</td>
<td>-0.0054***</td>
<td>-0.0024***</td>
<td>0.0002</td>
<td>0.0009</td>
</tr>
<tr>
<td></td>
<td>(4.69)</td>
<td>(2.74)</td>
<td>(0.17)</td>
<td>(0.59)</td>
</tr>
<tr>
<td>(sole ownership) ^2</td>
<td>0.0001***</td>
<td>0.0000</td>
<td>-0.0000</td>
<td>-0.0000</td>
</tr>
<tr>
<td></td>
<td>(3.65)</td>
<td>(0.81)</td>
<td>(1.39)</td>
<td>(1.29)</td>
</tr>
<tr>
<td>ADR Level 1 dummy</td>
<td>-0.0438</td>
<td>0.0176</td>
<td>0.0278</td>
<td>0.0263</td>
</tr>
<tr>
<td></td>
<td>(0.99)</td>
<td>(0.61)</td>
<td>(0.87)</td>
<td>(0.56)</td>
</tr>
<tr>
<td>ADR Level 2-3 dummy</td>
<td>-0.0794</td>
<td>-0.0386</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.22)</td>
<td>(0.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSCI index dummy</td>
<td>0.0317</td>
<td>0.0139</td>
<td>0.0073</td>
<td>0.0051</td>
</tr>
<tr>
<td></td>
<td>(1.55)</td>
<td>(0.94)</td>
<td>(0.43)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>bank dummy</td>
<td>-0.0521</td>
<td>0.0102</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.44)</td>
<td>(0.28)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-digit industry dummies yes yes yes yes
Observations 3553 3553 3553 1965
No. of firms 581 581 581 267
R^2 0.323 0.31 0.23 0.28
Table 6: Durbin-Wu-Hausman and 2SLS Results

Panel A reports the Durban-Wu-Hausman test results. *Panel B* reports OLS and firm random effects regressions of Tobin’s *q* on Board Structure Index, estimated using two-stage (2SLS) regressions, with asset size dummy as an instrument for Board Structure Index, using pooled data from 1999-2003. Large firms were subject to special corporate governance rules under rules adopted in second half of 1999, which were effective roughly year-end 2000. For first stage, regression (1) regresses Board Structure Index on asset size dummy and other exogenous variables; regression (2) adds *KCGI* - Board Structure Index as an additional control variable. The second stage is estimated using the fitted value for Board Structure Index from the first stage. Other control variables and treatment of outliers are the same as in *Table 5*, except that we exclude *MSCI* Index and *ADR* dummy variables due to high correlation with asset size dummy. *, **, and *** respectively indicate significance levels at 10%, 5%, and 1% levels. All regressions use year dummies, unbalanced panels, and Rogers’ robust standard errors. OLS regressions use firm clusters. *R*² is adjusted *R*² for OLS regressions and overall *R*² for random effects. *t*-values are reported in parentheses. Significant results (at 5% level or better) are shown in boldface.

Panel A: Durban-Wu-Hausman Test

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Second Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Structure Index</td>
<td>ln(Tobin’s q)</td>
</tr>
<tr>
<td>Without Control</td>
<td>Controlling for Rest of KCGI</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Board Structure Index</td>
<td>0.0163***</td>
</tr>
<tr>
<td>KCGI - Board Structure Index</td>
<td>0.0562***</td>
</tr>
<tr>
<td>Residual From 1st Stage</td>
<td>-0.0057</td>
</tr>
<tr>
<td>Asset Size Dummy</td>
<td>7.4686***</td>
</tr>
<tr>
<td>ln(assets)</td>
<td>0.4534***</td>
</tr>
<tr>
<td>(3.86)</td>
<td>(3.12)</td>
</tr>
<tr>
<td>Other control variables</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>3400</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.6952</td>
</tr>
</tbody>
</table>

Panel B: 2SLS Results for Board Structure Index

<table>
<thead>
<tr>
<th>First Stage</th>
<th>Second Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Structure Index</td>
<td>ln(Tobin’s q)</td>
</tr>
<tr>
<td>Without Control</td>
<td>Controlling for Rest of KCGI</td>
</tr>
<tr>
<td>Pool</td>
<td>Firm Random Effects</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Fitted Value from 1st Stage</td>
<td>0.0163***</td>
</tr>
<tr>
<td>(4.25)</td>
<td>(3.52)</td>
</tr>
<tr>
<td>KCGI - Board Structure Index</td>
<td>0.0562***</td>
</tr>
<tr>
<td>Index</td>
<td>(4.91)</td>
</tr>
<tr>
<td>Asset Size Dummy</td>
<td>7.4686***</td>
</tr>
<tr>
<td>ln(assets)</td>
<td>0.4534***</td>
</tr>
<tr>
<td>(15.42)</td>
<td>(14.95)</td>
</tr>
<tr>
<td>Other control variables</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>3400</td>
</tr>
<tr>
<td>R²</td>
<td>0.6952</td>
</tr>
</tbody>
</table>
Panel C: 3SLS Results for Board Structure Index

<table>
<thead>
<tr>
<th></th>
<th>3SLS Model 1</th>
<th>3SLS Model 2</th>
<th>3SLS Model 3</th>
<th>3SLS Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) bs2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln_tq</td>
<td>0.0139***</td>
<td>0.0139***</td>
<td>0.0139***</td>
<td>0.0139***</td>
</tr>
<tr>
<td></td>
<td>(5.41)</td>
<td>(5.41)</td>
<td>(5.42)</td>
<td>(5.41)</td>
</tr>
<tr>
<td>(3) ln_tq</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln_tq</td>
<td>4.9906***</td>
<td>2.9948*</td>
<td>4.1126***</td>
<td>4.3956**</td>
</tr>
<tr>
<td></td>
<td>(5.48)</td>
<td>(1.70)</td>
<td>(3.32)</td>
<td>(2.06)</td>
</tr>
<tr>
<td>(4) ln_tq</td>
<td>6.7630***</td>
<td>6.9525***</td>
<td>6.8475***</td>
<td>6.8224***</td>
</tr>
<tr>
<td></td>
<td>(23.25)</td>
<td>(24.60)</td>
<td>(26.32)</td>
<td>(22.14)</td>
</tr>
<tr>
<td>(5) ln_l</td>
<td>-0.0423***</td>
<td>-0.0925</td>
<td>-0.0422***</td>
<td>-0.0435***</td>
</tr>
<tr>
<td></td>
<td>(6.81)</td>
<td>(6.81)</td>
<td>(7.23)</td>
<td>(6.81)</td>
</tr>
<tr>
<td>(6) ln_l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln_l</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.88)</td>
<td>(6.81)</td>
<td>(7.23)</td>
<td>(6.81)</td>
</tr>
<tr>
<td>(7) rd_sales</td>
<td>-0.0738</td>
<td>0.0641**</td>
<td>0.0656**</td>
<td>0.0637**</td>
</tr>
<tr>
<td></td>
<td>(0.21)</td>
<td>(2.31)</td>
<td>(2.45)</td>
<td>(2.46)</td>
</tr>
<tr>
<td>(8) adv_sales</td>
<td>-0.6117</td>
<td>1.1782***</td>
<td>1.2236***</td>
<td>1.1933***</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(4.86)</td>
<td>(5.13)</td>
<td>(5.18)</td>
</tr>
<tr>
<td>(9) adv_sales</td>
<td>0.1366</td>
<td>-0.0216**</td>
<td>-0.0194***</td>
<td>-0.0180***</td>
</tr>
<tr>
<td></td>
<td>(1.40)</td>
<td>(2.93)</td>
<td>(2.71)</td>
<td>(2.61)</td>
</tr>
<tr>
<td>(10) ebit_sales</td>
<td>0.1366</td>
<td>-0.0216**</td>
<td>-0.0194***</td>
<td>-0.0180***</td>
</tr>
<tr>
<td></td>
<td>(1.40)</td>
<td>(2.93)</td>
<td>(2.71)</td>
<td>(2.61)</td>
</tr>
<tr>
<td>(11) kcgi_bs2</td>
<td>0.0365***</td>
<td>0.0032***</td>
<td>0.0032***</td>
<td>0.0388***</td>
</tr>
<tr>
<td></td>
<td>(3.61)</td>
<td>(4.91)</td>
<td>(4.91)</td>
<td>(4.91)</td>
</tr>
<tr>
<td>(12) ln_a</td>
<td>0.4957***</td>
<td>-0.0323***</td>
<td>-0.0324***</td>
<td>-0.0323***</td>
</tr>
<tr>
<td></td>
<td>(5.81)</td>
<td>(5.60)</td>
<td>(5.62)</td>
<td>(5.60)</td>
</tr>
<tr>
<td>other controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>3373</td>
<td>3373</td>
<td>3373</td>
<td>3373</td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Difference-in-Difference Test

Coefficients from OLS regressions of difference in \(\ln(\text{Tobin's } q) \) from base date to specified future dates on required adoption dummies at different dates (= 1 if firm is in sample on indicated date and is SOE, bank, or large), voluntary adoption dummies (= 1 if firm has 50% outside directors without any legal requirement) and period and firm fixed effects. [Outliers for each year are identified and dropped if the studentized residual from a regression of \(\ln(\text{Tobin's } q) \) on 50% outside director dummy is greater than ±1.96]. *, **, and *** indicate significance at 10%, 5%, and 1% levels. All regressions use firm clusters and Rogers' robust standard errors. \(t \)-values are reported in parentheses. Significant results (at 5% level or better) are shown in **boldface**.

<table>
<thead>
<tr>
<th>base date</th>
<th>difference in ln(Tobin’s q) from base date to indicated date</th>
<th>Number of firms</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Required adopters</td>
<td>Voluntary adopters</td>
<td>Number of firms</td>
<td>required firms</td>
<td>voluntary adopters</td>
<td>total sample</td>
</tr>
<tr>
<td>June 30, 1999</td>
<td>0.1256*** (3.05)</td>
<td>0.0304 (0.42)</td>
<td>75</td>
<td>76</td>
<td>4</td>
<td>513</td>
</tr>
<tr>
<td>06/30/00</td>
<td>0.1588*** (4.99)</td>
<td>0.0305 (0.64)</td>
<td>70</td>
<td>15</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>12/31/00</td>
<td>0.2187*** (7.88)</td>
<td>0.0612 (1.41)</td>
<td>71</td>
<td>20</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>06/30/01</td>
<td>0.1479*** (5.36)</td>
<td>0.0167 (0.46)</td>
<td>70</td>
<td>16</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>12/31/01</td>
<td>0.1964*** (7.24)</td>
<td>0.0815*** (2.63)</td>
<td>64</td>
<td>26</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td>06/30/02</td>
<td>0.2059*** (7.62)</td>
<td>0.0242 (0.86)</td>
<td>64</td>
<td>20</td>
<td>465</td>
<td></td>
</tr>
<tr>
<td>12/31/02</td>
<td>0.2391*** (8.94)</td>
<td>0.0774** (2.41)</td>
<td>60</td>
<td>24</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>06/30/03</td>
<td>0.2497*** (8.91)</td>
<td>0.0861*** (2.69)</td>
<td>64</td>
<td>38</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>12/31/03</td>
<td>0.2990*** (9.24)</td>
<td>0.0775*** (2.66)</td>
<td>63</td>
<td>43</td>
<td>481</td>
<td></td>
</tr>
<tr>
<td>06/30/04</td>
<td>0.3069*** (9.20)</td>
<td>0.0723 (1.56)</td>
<td>61</td>
<td>30</td>
<td>478</td>
<td></td>
</tr>
<tr>
<td>12/31/04</td>
<td>0.3184*** (8.98)</td>
<td>0.0342 (0.88)</td>
<td>56</td>
<td>29</td>
<td>366</td>
<td></td>
</tr>
</tbody>
</table>

Other period dummies: semi-annual
- required dummy -0.1826*** (6.09)

Firm Fixed Effects: yes
Observations: 6114
adjusted \(R^2 \): 0.18

- 40 -

http://law.bepress.com/alea/17th/art52
Table 8: Results for Board Independence and Board Committee Subindices and Elements

Coefficients from regressions of $\ln(Tobin's\ q)$ on Board Independence and Board Committees Subindices, Board Elements, indicated control for rest of KCGI, and other control variables. Outliers for each year are identified and dropped if the studentized residual from a regression of $\ln(Tobin's\ q)$ on Board Structure Index (for first and last sets) or indicated subindex (for middle sets) is greater than ±1.96. Control variables are same as in Table 5. *, **, and *** indicate significance at 10%, 5%, and 1% levels. All regressions use year dummies, unbalanced panels, and Rogers' robust standard errors. OLS regressions use firm clusters. t- or z-values are reported in parentheses. R² is adjusted R² for OLS, overall R² for random effects, and within R² for fixed effects regressions. Significant results (at 5% level or better) are shown in **boldface**.

<table>
<thead>
<tr>
<th></th>
<th>Pooled OLS</th>
<th>Random Effects</th>
<th>Fixed Effects (Unbalanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Independence Subindex</td>
<td>0.0158*** (5.70)</td>
<td>0.0136*** (8.59)</td>
<td>0.0125*** (7.49)</td>
</tr>
<tr>
<td>Board Committee Subindex</td>
<td>0.0096*** (2.83)</td>
<td>0.0081*** (3.91)</td>
<td>0.0071*** (3.21)</td>
</tr>
<tr>
<td>KCGI - Board Structure Index</td>
<td>0.0043*** (4.57)</td>
<td>0.0019*** (3.05)</td>
<td>0.0008 (1.14)</td>
</tr>
<tr>
<td>R²</td>
<td>0.3168</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>b1 (50% outside director dummy)</td>
<td>0.1139*** (5.13)</td>
<td>0.0917*** (7.40)</td>
<td>0.0819*** (6.48)</td>
</tr>
<tr>
<td>b2 (> 50% outside director dummy)</td>
<td>0.0462* (1.92)</td>
<td>0.0480*** (3.13)</td>
<td>0.0493*** (3.10)</td>
</tr>
<tr>
<td>KCGI - Board Independence Subindex</td>
<td>0.0044*** (5.09)</td>
<td>0.0023*** (4.18)</td>
<td>0.0013*** (2.06)</td>
</tr>
<tr>
<td>R²</td>
<td>0.32</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>Nominating committee</td>
<td>0.0518** (2.41)</td>
<td>0.0336*** (2.86)</td>
<td>0.0249** (2.01)</td>
</tr>
<tr>
<td>Audit committee</td>
<td>0.0409* (1.75)</td>
<td>0.0508*** (3.60)</td>
<td>0.0511*** (3.32)</td>
</tr>
<tr>
<td>Compensation committee</td>
<td>0.0706** (2.03)</td>
<td>0.0273 (1.36)</td>
<td>0.0215 (1.01)</td>
</tr>
<tr>
<td>KCGI - Board Committee Subindex</td>
<td>0.0052*** (5.73)</td>
<td>0.0029*** (4.92)</td>
<td>0.0019*** (2.83)</td>
</tr>
<tr>
<td>R²</td>
<td>0.3065</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td>b1 (50% outside director dummy)</td>
<td>0.0975*** (3.86)</td>
<td>0.0813*** (5.84)</td>
<td>0.0734*** (5.32)</td>
</tr>
<tr>
<td>b2 (> 50% outside director dummy)</td>
<td>0.0200 (0.80)</td>
<td>0.0364*** (2.27)</td>
<td>0.0432*** (2.61)</td>
</tr>
<tr>
<td>Nominating committee</td>
<td>0.0388* (1.83)</td>
<td>0.0265** (2.28)</td>
<td>0.0203* (1.67)</td>
</tr>
<tr>
<td>Audit committee</td>
<td>0.0095 (0.40)</td>
<td>0.0283** (2.02)</td>
<td>0.0310** (2.05)</td>
</tr>
<tr>
<td>Compensation committee</td>
<td>0.0892** (2.53)</td>
<td>0.0395* (1.88)</td>
<td>0.0312 (1.40)</td>
</tr>
<tr>
<td>KCGI - Board Structure Index</td>
<td>0.0041*** (4.40)</td>
<td>0.0019*** (3.02)</td>
<td>0.0008 (1.19)</td>
</tr>
<tr>
<td>R²</td>
<td>0.3165</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>Observations</td>
<td>3553</td>
<td>3553</td>
<td>3553</td>
</tr>
<tr>
<td>No. of firms</td>
<td>581</td>
<td>581</td>
<td>581</td>
</tr>
</tbody>
</table>
Table 9: Firm Fixed Effects Results for Foreign Director Dummy

Coefficients from firm fixed effects regressions of \ln(Tobin’s q) on (i) foreign director dummy, Board Independence Subindex, and interaction of these variables, in each case with indicated controls for rest of KCGI and other control variables. Outliers for each year are identified and dropped if the studentized residual from a regression of \ln(Tobin’s q) on foreign director dummy is greater than ±1.96. Control variables are same as in Table 5. Regressions use year dummies, unbalanced panels, and Rogers’ robust standard errors. *, **, and *** indicate significance at 10%, 5%, and 1% levels. t-values are reported in parentheses. Significant results (at 5% level or better) are shown in **boldface**.

<table>
<thead>
<tr>
<th></th>
<th>Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c7$ (foreign director dummy)</td>
<td>-0.0366**</td>
</tr>
<tr>
<td></td>
<td>(2.03)</td>
</tr>
<tr>
<td>Board Independence Subindex</td>
<td>0.0101***</td>
</tr>
<tr>
<td></td>
<td>(6.16)</td>
</tr>
<tr>
<td>foreign director dummy x Board</td>
<td>0.0150***</td>
</tr>
<tr>
<td>Independence Subindex</td>
<td>(4.26)</td>
</tr>
<tr>
<td>Board Procedure Index - $c7$</td>
<td>0.0010</td>
</tr>
<tr>
<td></td>
<td>(0.68)</td>
</tr>
<tr>
<td>$KCGI$ - Board Procedure Index</td>
<td>0.0034***</td>
</tr>
<tr>
<td></td>
<td>(5.76)</td>
</tr>
<tr>
<td>$KCGI$ - Board Procedure Index & Board Independence Subindex</td>
<td>0.0017**</td>
</tr>
<tr>
<td></td>
<td>(2.46)</td>
</tr>
<tr>
<td>Other Controls</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>3556</td>
</tr>
<tr>
<td>Within R^2</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://law.bepress.com/alea/17th/art52
Table 10: Multiyear Results for Board Independence Elements

Coefficients from regressions of ln(Tobin’s q) on (i) alternate element b0 (fraction of outside directors), (ii) elements b0 and b1 together, (iii) element b-below (defined as \(\min(2 \times \text{fraction of outside directors}, 1)\)) and element b1, and (iv) element b0, for subsample of firms with < 50% outside directors; in each case with indicated control for remainder of KCGI and other control variables. Outliers for each year are identified and dropped if the studentized residual from a regression of ln(Tobin’s q) on Board Independence Subindex is greater than ±1.96. Control variables are same as in Table 5. All regressions use year dummies, unbalanced panels, and Rogers' robust standard errors. OLS regressions use firm clusters. *, **, and *** indicate significance at 10%, 5%, and 1% levels. t- or z-values are reported in parentheses. \(R^2\) is adjusted \(R^2\) for OLS, overall \(R^2\) for random effects, and within \(R^2\) for fixed effects regressions. Significant results (at 5% level or better) are shown in boldface.

<table>
<thead>
<tr>
<th>Panel</th>
<th>Principal independent variables</th>
<th>Pooled OLS</th>
<th>Random Effects</th>
<th>Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>b0 (fraction outside directors)</td>
<td>0.2990***</td>
<td>0.2014***</td>
<td>0.1721***</td>
</tr>
<tr>
<td></td>
<td>(\text{KCGI - Board Independence Subindex})</td>
<td>(5.29)</td>
<td>(5.80)</td>
<td>(4.70)</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.31</td>
<td>0.30</td>
<td>0.22</td>
</tr>
<tr>
<td>(ii)</td>
<td>b0 (fraction of outside directors)</td>
<td>0.0663</td>
<td>0.0182</td>
<td>0.0126</td>
</tr>
<tr>
<td></td>
<td>b1 (50% outside director dummy)</td>
<td>0.1127***</td>
<td>0.1008***</td>
<td>0.0925***</td>
</tr>
<tr>
<td></td>
<td>(\text{KCGI - Board Independence Subindex})</td>
<td>(4.71)</td>
<td>(7.03)</td>
<td>(6.23)</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.32</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>(iii)</td>
<td>b-below (min(2 \times \text{fraction of outside directors}, 1))</td>
<td>0.0358</td>
<td>-0.0074</td>
<td>-0.0180</td>
</tr>
<tr>
<td></td>
<td>50% outside director dummy</td>
<td>0.1120***</td>
<td>0.1073***</td>
<td>0.1016***</td>
</tr>
<tr>
<td></td>
<td>(\text{KCGI - Board Independence Subindex})</td>
<td>(4.62)</td>
<td>(7.31)</td>
<td>(6.69)</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.32</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>3549</td>
<td>3549</td>
<td>3549</td>
</tr>
<tr>
<td>(iv)</td>
<td>b0 (fraction outside directors)</td>
<td>0.1700**</td>
<td>0.0736</td>
<td>0.0388</td>
</tr>
<tr>
<td></td>
<td>(\text{KCGI - Board Independence Subindex})</td>
<td>(2.20)</td>
<td>(1.34)</td>
<td>(0.67)</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.30</td>
<td>0.29</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Observations</td>
<td>3031</td>
<td>3031</td>
<td>3031</td>
</tr>
</tbody>
</table>
Table 11: Year-by-Year OLS Results for Board Structure Subindex

Coefficients from regressions of \ln(Tobin’s q) on Board Structure Index, ($KCGI$ – Board Structure Index), and control variables. Outliers for each year are identified and dropped if the studentized residual from a regression of \ln(Tobin’s q) on Board Structure Index is greater than \pm1.96. Control variables are same as in Table 5, except bank dummy is omitted for 1998-1999 due to colinearity with Board Structure Index. *, **, and *** indicate significance at 10%, 5%, and 1% levels. All regressions use Rogers’ robust standard errors with firm clusters. t-values are reported in parentheses. Significant results (at 5% level or better) are shown in **boldface**.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Structure Index</td>
<td>0.0056</td>
<td>0.0002</td>
<td>0.0115*</td>
<td>0.0134*</td>
<td>0.0103*</td>
<td>0.0122*</td>
<td>0.0115*</td>
<td>0.0094*</td>
</tr>
<tr>
<td>(1.26)</td>
<td>(0.04)</td>
<td>(3.54)</td>
<td>(4.05)</td>
<td>(3.26)</td>
<td>(3.50)</td>
<td>(3.32)</td>
<td>(2.77)</td>
<td></td>
</tr>
<tr>
<td>KCGI - Board Structure Index</td>
<td>0.0024*</td>
<td>0.0061*</td>
<td>0.0044*</td>
<td>0.0069*</td>
<td>0.00645*</td>
<td>0.0038*</td>
<td>0.0041*</td>
<td>0.0037*</td>
</tr>
<tr>
<td>(1.75)</td>
<td>(4.02)</td>
<td>(3.13)</td>
<td>(3.52)</td>
<td>(3.21)</td>
<td>(1.88)</td>
<td>(2.12)</td>
<td>(1.76)</td>
<td></td>
</tr>
<tr>
<td>No. of firms</td>
<td>450</td>
<td>418</td>
<td>489</td>
<td>464</td>
<td>501</td>
<td>368</td>
<td>489</td>
<td>374</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.317</td>
<td>0.328</td>
<td>0.344</td>
<td>0.286</td>
<td>0.259</td>
<td>0.328</td>
<td>0.346</td>
<td>0.392</td>
</tr>
</tbody>
</table>

http://law.bepress.com/alea/17th/art52
Table 12: Firm Fixed Effects: Subsample Results

Coefficients from firm fixed effects regressions for indicated subsamples of ln(Tobin’s q) on (i) Board Structure Index, (ii) Board Independence and Board Committee Subindices, and (iii) 50% outside directors dummy and > 50% outside directors dummy, in each case with control for rest of KCGI and other control variables. Control variables are same as in Table 5. Outliers for each year are identified and dropped if the studentized residual from a regression of ln(Tobin’s q) on [Board Structure Index for specifications (i)-(ii); Board Independence Subindex for specification (iii)] is greater than ±1.96. *, **, and *** indicate significance at 10%, 5%, and 1% levels. All regressions use year dummies, unbalanced panel, and Rogers' robust standard errors. t-values are reported in parentheses. Significant results (at 5% level or better) are shown in boldface.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Subsample</th>
<th>Sample Size</th>
<th>Board Structure</th>
<th>Board Independence</th>
<th>Board Committee</th>
<th>b1 (50% outside directors)</th>
<th>b2 (> 50% outside directors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Full Sample</td>
<td>3553</td>
<td>0.0102***</td>
<td>0.0125***</td>
<td>0.0071***</td>
<td>0.0819***</td>
<td>0.0495***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8.73)</td>
<td>(7.49)</td>
<td>(3.21)</td>
<td>(6.47)</td>
<td>(3.11)</td>
</tr>
<tr>
<td>(2)</td>
<td>Banks</td>
<td>76</td>
<td>-0.0008</td>
<td>-0.0009</td>
<td>-0.0006</td>
<td>-0.0072</td>
<td>-0.0007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.47)</td>
<td>(1.40)</td>
<td>(0.69)</td>
<td>(1.10)</td>
<td>(0.13)</td>
</tr>
<tr>
<td>(3)</td>
<td>Non-Banks</td>
<td>3477</td>
<td>0.0105***</td>
<td>0.0134***</td>
<td>0.0067***</td>
<td>0.0839***</td>
<td>0.0571***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(8.40)</td>
<td>(7.46)</td>
<td>(2.70)</td>
<td>(6.38)</td>
<td>(3.23)</td>
</tr>
<tr>
<td>(4)</td>
<td>Financial Firms and SOEs</td>
<td>431</td>
<td>0.0081***</td>
<td>0.0069***</td>
<td>0.0104***</td>
<td>0.0483**</td>
<td>0.0233</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4.76)</td>
<td>(3.57)</td>
<td>(3.07)</td>
<td>(2.39)</td>
<td>(1.36)</td>
</tr>
<tr>
<td>(5)</td>
<td>Non-Financial, Non-SOE Firms</td>
<td>3122</td>
<td>0.0109***</td>
<td>0.0143***</td>
<td>0.0066**</td>
<td>0.0811***</td>
<td>0.0748**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6.67)</td>
<td>(6.14)</td>
<td>(2.26)</td>
<td>(5.09)</td>
<td>(3.11)</td>
</tr>
<tr>
<td>(6)</td>
<td>Chaebol Firms</td>
<td>760</td>
<td>0.0083***</td>
<td>0.0089***</td>
<td>0.0072*</td>
<td>0.0626***</td>
<td>0.0333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4.15)</td>
<td>(3.55)</td>
<td>(1.79)</td>
<td>(3.02)</td>
<td>(1.48)</td>
</tr>
<tr>
<td>(7)</td>
<td>Non-Chaebol Firms</td>
<td>2793</td>
<td>0.0093***</td>
<td>0.0110***</td>
<td>0.0074***</td>
<td>0.0789***</td>
<td>0.0415*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(5.57)</td>
<td>(4.52)</td>
<td>(2.60)</td>
<td>(4.03)</td>
<td>(1.68)</td>
</tr>
<tr>
<td>(8)</td>
<td>Large Firms (specific year)</td>
<td>488</td>
<td>0.0035</td>
<td>0.0053*</td>
<td>-0.0003</td>
<td>0.0515**</td>
<td>0.0204</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.28)</td>
<td>(1.69)</td>
<td>(0.07)</td>
<td>(2.13)</td>
<td>(1.12)</td>
</tr>
<tr>
<td>(9)</td>
<td>Small Firms (specific year)</td>
<td>3065</td>
<td>0.0096***</td>
<td>0.0116***</td>
<td>0.0074**</td>
<td>0.0822***</td>
<td>0.0344</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4.86)</td>
<td>(4.34)</td>
<td>(2.30)</td>
<td>(4.21)</td>
<td>(1.18)</td>
</tr>
<tr>
<td>(10)</td>
<td>Non-manufacturing firms</td>
<td>1067</td>
<td>0.0090***</td>
<td>0.0117***</td>
<td>0.0050*</td>
<td>0.0524***</td>
<td>0.0069***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6.27)</td>
<td>(5.85)</td>
<td>(1.84)</td>
<td>(3.42)</td>
<td>(3.86)</td>
</tr>
<tr>
<td>(11)</td>
<td>Manufacturing firms</td>
<td>2486</td>
<td>0.0124***</td>
<td>0.0136***</td>
<td>0.00108***</td>
<td>0.1049***</td>
<td>0.0363</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(6.45)</td>
<td>(5.08)</td>
<td>(2.99)</td>
<td>(5.40)</td>
<td>(1.35)</td>
</tr>
</tbody>
</table>
Table 13: Robustness Checks with Alternate Measures of Firm Value

Coefficients from firm fixed effects regressions of \ln(Tobin’s q), \ln(market/book) and \ln(market/sales) on (i) Board Structure Index; (ii) Board Independence and Board Committees Subindices; and (iii) element b1 (50% outside director dummy) and b2 (> 50% outside director dummy), in each case with indicated control for rest of KCGI, and other control variables. Outliers for each year are identified and dropped if the studentized residual from a regression of the dependent variable on Board Structure Index (for first and second sets) or Board Independence Subindex (for third set) is greater than ±1.96. Control variables are same as in Table 5. *, **, and *** indicate significance at 10%, 5%, and 1% levels. All regressions use unbalanced panels and Rogers’ robust standard errors. t -values are reported in parentheses. Significant results (at 5% level or better) are shown in boldface.

<table>
<thead>
<tr>
<th>dependent variable</th>
<th>ln(Tobin’s q)</th>
<th>ln(market/book)</th>
<th>ln (market/sales)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Structure Index</td>
<td>0.0102***</td>
<td>0.0170***</td>
<td>0.0155***</td>
</tr>
<tr>
<td></td>
<td>(8.73)</td>
<td>(4.63)</td>
<td>(4.13)</td>
</tr>
<tr>
<td>KCGI - Board Structure Index</td>
<td>0.0007</td>
<td>0.0017</td>
<td>0.0048*</td>
</tr>
<tr>
<td></td>
<td>(0.98)</td>
<td>(1.00)</td>
<td>(2.68)</td>
</tr>
<tr>
<td>Within R2</td>
<td>0.23</td>
<td>0.31</td>
<td>0.42</td>
</tr>
<tr>
<td>Board Independence Subindex</td>
<td>0.0125*</td>
<td>0.0289*</td>
<td>0.0209*</td>
</tr>
<tr>
<td></td>
<td>(7.49)</td>
<td>(5.49)</td>
<td>(3.80)</td>
</tr>
<tr>
<td>Board Committee Subindex</td>
<td>0.0071*</td>
<td>0.0015</td>
<td>0.0088</td>
</tr>
<tr>
<td></td>
<td>(3.21)</td>
<td>(0.24)</td>
<td>(1.29)</td>
</tr>
<tr>
<td>KCGI - Board Structure Index</td>
<td>0.0008</td>
<td>0.0022</td>
<td>0.0050*</td>
</tr>
<tr>
<td></td>
<td>(1.14)</td>
<td>(1.30)</td>
<td>(2.76)</td>
</tr>
<tr>
<td>Within R2</td>
<td>0.23</td>
<td>0.31</td>
<td>0.42</td>
</tr>
<tr>
<td>b1 (50% outside dummy)</td>
<td>0.0819*</td>
<td>0.1514*</td>
<td>0.0994*</td>
</tr>
<tr>
<td></td>
<td>(6.48)</td>
<td>(3.74)</td>
<td>(2.50)</td>
</tr>
<tr>
<td>b2 (> 50% outside dummy)</td>
<td>0.0493*</td>
<td>0.1286</td>
<td>0.1148</td>
</tr>
<tr>
<td></td>
<td>(3.10)</td>
<td>(2.32)</td>
<td>(2.20)</td>
</tr>
<tr>
<td>KCGI - Board Independence</td>
<td>0.0013</td>
<td>0.0019</td>
<td>0.0058*</td>
</tr>
<tr>
<td></td>
<td>(2.06)</td>
<td>(1.23)</td>
<td>(3.53)</td>
</tr>
<tr>
<td>Within R2</td>
<td>0.23</td>
<td>0.31</td>
<td>0.42</td>
</tr>
<tr>
<td>Observations</td>
<td>3553</td>
<td>3571</td>
<td>3613</td>
</tr>
<tr>
<td>No. of firms</td>
<td>581</td>
<td>582</td>
<td>583</td>
</tr>
</tbody>
</table>