Statistical Discrimination in the Criminal Justice System: The Case for Fines Instead of Jail

Philip A. Curry
Simon Fraser University

Tilman Klumpp
Emory University
Statistical Discrimination in the Criminal Justice System: The Case for Fines Instead of Jail

Philip A. Curry† Simon Fraser University
Tilman Klumpp‡ Emory University

April 29, 2007

Abstract

We develop a model of statistical discrimination in criminal trials. Agents carry publicly observable labels of no economic significance (race, etc.) and choose to commit crimes if their privately observed utility from doing so is high enough. A crime generates noisy evidence, and defendants are convicted when the realized amount of evidence is sufficiently strong. Agents may also be convicted even when no crime has occurred. Convicted offenders are penalized either by incarceration or by monetary fines. In the case of prison sentences, discriminatory equilibria can exist in which members of one group face a prior prejudice in trials and are convicted with less evidence than members of the other group: If income is inversely related to prejudice, prison sentences have a lesser deterrence effect on the disadvantaged group whose members will thus commit more crimes, justifying the initial prejudice. Applying this argument to lifetime income, it is even possible that all individuals earn the same wage, but racial differences persist in the crime rate because the expected duration of employment is less for persons who face a higher prejudice (because they will be jailed more often). Such discriminatory equilibria cannot exist with monetary fines instead of prison sentences, as they represent a stronger penalty for persons with lower earnings. Our findings have implications for potential reforms of the American criminal justice system.

Keywords: Statistical discrimination, criminal justice, stereotypes, prejudice, double standards.

JEL code: D72, D78.

*We thank David Bjerk, Amy Broder, David Scoones, Xuejuan Su, as well as participants at the 2006 Meetings of the Canadian Law and Economics Association for fruitful discussions.

†Department of Economics, Simon Fraser University. 8888 University Dr., Burnaby, BC, V6A 1S6, Canada. E-mail: pcurry@sfu.ca.

‡Department of Economics, Emory University. Rich Building 316, 1602 Fishburne Dr., Atlanta, GA 30322, USA. E-mail: tklumpp@emory.edu.
1 Introduction

Criminal conviction rates in the United States differ drastically across racial groups. The jail incarceration rates for U.S. blacks, for example, is 800 people per 100,000, while the rate for whites is 166 per 100,000. An estimated 12% of black males in their late twenties were incarcerated in 2005, as opposed to 1.7% of white males. That these differences exist is undisputed. It is much less clear, however, why they exist. One possible explanation is that blacks commit more crimes than whites. For example, criminal participation tends to be correlated with economic characteristics such as income, education, or area of residence, and these characteristics differ across racial groups. Another possibility is that the criminal justice system is somehow “biased,” so that blacks are more easily convicted. In this paper, we introduce a theoretical framework in which both differences in criminal participation and judicial biases can arise simultaneously—and if this happens, each effect necessitates the other.

In our model, a Bayesian jury must determine whether a given amount of evidence is sufficient to convict a defendant. Suppose that convicted offenders are sent to jail for a fixed amount of time. Because such a sentence punishes persons with a higher labor market income more severely than persons with a lower income, rich individuals should be a priori less likely to commit crimes. Poorer individuals, on the other hand, commit more crime, but not because they have more to gain than richer ones, but because they have less to lose. Thus, if the defendant’s income is observed at trial it may enter the jury’s belief about the guilt of the defendant, even after observing all the evidence at hand. We can call this a “rational prejudice” against poorer individuals. Now suppose that income differences not only generate prejudice, but are also the result of such prejudice. For example, persons believed to be more prone to criminal behavior may have a harder time finding well-paying employment opportunities, and are therefore poorer. However, because they are poorer they commit more crimes, justifying the initial prejudice. There may then be multiple rational expectations equilibria, in each one of which an individual’s income is consistent with the judicial bias against him, and vice versa. If an individual’s membership in a certain subgroup of the population is observed by the jury (such as the person’s race or ethnic background), a social norm may develop that associates different groups with different such equilibria. In such an overall “stereotyping equilibrium,” persons are being treated differently simply because they are members of different (but ex-ante identical) groups. This equilibrium exhibits the following properties: Members of the group which is discriminated against must deal with an unfavorable prejudice in the legal system, are convicted of a crime with less evidence against them, commit more crimes, are more likely to be incarcerated, and are ex-post economically disadvantaged. In this equilibrium, race (or any other group membership) serves as a coordination device through which individual roles and commonly expected behaviors are developed. Racial labels are then “sunspots.”

1Source: Bureau of Justice Statistics Prison and Jail Inmates at Midyear 2005.
Economically meaningless events, which derive significance only because they coordinate individual actions and social expectations.\(^2\)

The sunspot theory of discrimination is often associated with the term \textit{statistical discrimination}. In our model, statistical discrimination arises from the interaction of the court, the labor market, and the corrections system. Policies designed to prevent such stereotyping outcomes could thus be aimed at each of these institutions. Which one is likely to work best? Consider first the possibility of affirmative action in the workplace, i.e. legislation that prevented differences in income. We show that, perhaps surprisingly, stereotyping equilibria can arise even if observed wages and employment rates are the same for all individuals \textit{not in jail} by extending our model to include a temporal dimension. Suppose convicted criminals are locked up for a long duration, and thus removed from earning opportunities. Then an individual who is more likely to spend a significant part of his life in jail will have fewer expected lifetime earnings than someone who is less likely to be convicted. Such an individual is therefore less likely to be deterred from crime by the threat of losing these future earnings. If the jury observes some non-economic characteristic, such as the person’s race, a prejudice against certain groups will result in higher conviction rates for these groups—but because groups with higher conviction rates have poorer members in terms of their expected lifetime earnings, this prejudice is justified by the previous deterrence argument. This version of our model represents an extreme case, where observed wages are entirely uncorrelated with crime and conviction rates, while judicial stereotyping based on race still persists.\(^3\) It thus demonstrates that affirmative action policies targeting the labor market may not have the desired effect.

A second possibility is regulation of the courts or the corrections system. In principle, one could require juries to treat all defendants in the same way. However, in our model juries convict if and only if their posterior belief in the defendant’s guilt lies above a certain threshold, and we assume this threshold is the same for all defendants. Judicial bias arises because juries have biased prior beliefs and hence weigh the same evidence differently, depending on the defendant’s race. Thus, one would have to give a juror a new prior belief, and it is unclear how that could be done. Alternatively, one could institute an “affirmative action” policy in the courts, by stipulating identical conviction rates for various groups to promote equal outcomes. In order to enforce such a policy, however, one would have to make one trial dependent on the outcomes of other trials. Such a dependence hardly seems desirable, let alone politically feasible.

In this paper, we identify an alternative remedy, namely the adoption of monetary fines instead of incarceration as a means of punishment. For many types of felonies, such as minor drug offenses, a fine can be a viable alternative to a prison sentence. Note that fines tend to penalize richer defendants less severely than poorer ones: For example, if agents experience diminishing marginal utility from money, then a fixed fine amount creates a

\(^2\)The term “sunspot equilibrium” for this phenomenon was introduced in Cass and Shell (1983). Various related notions have appeared in Aumann (1987), Forges (1986), and Cartwright and Wooders (2006), among others.

\(^3\)In this extension, race is predictive of the incarceration rate even after controlling for economic factors, an effect found in several empirical studies (e.g. Bjerk (2006), Krivo and Peterson (1996), Raphael and Winter-Ebmer (2001), and Trumbull (1989).
utility loss that is larger for a poor defendant than for a rich one.\footnote{Of course, by adjusting the length of a prison sentence one can achieve the same result; to an extent this is achieved already by the fact that rich defendants can hire better lawyers. However, imposing such a sentencing policy would hardly be politically feasible.} If, as before, expected income is endogenously determined by how an individual is treated in the justice system, then fines work in exactly the opposite direction as imprisonment: Poorer individuals will necessarily be the ones who are punished more severely and hence be more easily deterred from committing crimes in the first place. The opposite happens for rich individuals, creating a strong force toward symmetric treatment of ex-ante identical agents. In effect, then, monetary punishments rule out exactly the kind of equilibrium indeterminacy that invites stereotyping and prejudice when punishment is by incarceration.

We remark that in this paper we do not consider the costs to either crime or corrections, and compare prison sentences and fines strictly with respect to the discrimination question. Hence, our paper does not offer a welfare analysis, and neither is this our intent. There are many reasons, besides the potential for biased outcomes, why one form of punishment may be preferable over another.\footnote{Economic arguments in favor of fines, for instance, include that the convicted offender is kept in gainful employment, revenue generated from the fine can be used to compensate the victim, and jailing costs are avoided. See also Morris and Tonry (1990) for a rather detailed and compelling argument as to why fines ought to be used to a greater degree than they currently are. Advantages of incarcerating criminals are the protection provided to the public for the time the offender is locked up, the assurance that the convicted person is punished and not a third party (a fine can always be paid by someone else), and that in many instances it simply “fits the crime” better than a monetary sanction would.} It is clear that, in any welfare analysis, private and social costs of crime and corrections must be taken into account. By ignoring them, the very simple policy of abandoning the criminal justice system (and not punish crime) becomes optimal, as it would never manifest itself in any measurable discrimination. While doing so would obviously achieve the goal of preventing biased outcomes, it seems abundantly clear that it would hardly be efficient if crime had a cost to the victim or to society (which it typically does).

We proceed as follows. In Section 2 we review the related literature. Our theoretical model is then developed in three steps. In Section 3, we assume (temporarily) that incomes are exogenously given and observable. In Section 4, we derive a number of results results for this case. In Section 5, we do away with the assumption that income is exogenous—instead, we introduce different (racial) groups which are ex-ante identical, and make each group’s income a function of prejudice toward that group. We show that this can create discriminatory equilibria if prison sentences are used as punishments, but not when fines are used. In Section 6, we consider two extensions of the model. First, by making the model dynamic we demonstrate that group membership can predict crime even when per-period income can not. As mentioned above, this result casts some doubt on the success of labor market interventions to prevent statistical discrimination. Second, we examine the case where an individual may be convicted of multiple offenses, and show that the intuitions from the previous sections still hold. Section 7 concludes with a few remarks. Most proofs are in the Appendix.
2 Related Literature

Our paper is related to several strands of literature. To begin with, the general concept of prejudice and self-confirming beliefs is not new. In the context of labor markets, it has been told by Phelps (1972), Arrow (1973), and Coate and Loury (1993) in influential contributions to the theory of discrimination. In the latter paper, for instance, having made a privately known investment in one’s productivity corresponds to the choice of not committing a crime in our model, a test score or other noisy measure of productivity corresponds to evidence, the belief that workers of one group are less qualified that workers of another group corresponds to jury prejudice, and an assignment to a low-paying job corresponds to conviction and imprisonment. The expectation of a low-paying job even with a high test-score is what creates a disincentive for workers of certain groups to invest in their productivity, so that they are correctly regarded as less-qualified in equilibrium. The theory of statistical discrimination hence provides an equilibrium-based alternative to models of taste-based discrimination (Becker, 1957).6

Within the crime literature, there are a few papers that address the issue of prejudice and statistical discrimination. Georgakopoulos (2004) considers the effects of false beliefs of criminality on arrest and conviction rates. He demonstrates that when an investigator falsely believes a minority to be more crime prone than the majority, they will be both arrested and convicted (sometimes falsely) more frequently, thereby lending credence to the false beliefs. Burke (2007) considers the psychological basis for false beliefs in prosecutors and proposes practices and institutions to prevent such cognitive bias from arising. This paper differs from the two described above in that, in equilibrium, the beliefs about a group’s proclivity to criminality are correct, albeit in a causal manner.

The paper closest to ours is that of Verdier and Zenou (2004), who examine a model of statistical discrimination, location choice, and criminal activity. As in our model, race serves as a coordination device in their paper, assigning different rational expectations equilibria to different racial groups. Their model is much different from ours, however, in the nature of the equilibrium feedbacks between beliefs, criminal activity, and economic variables. Discriminatory outcomes arise in Verdier and Zenou (2004) because lower wages induce residential location choices closer to high-crime areas, and therefore lower the cost of committing a crime. In our model, on the other hand, it is not location that provides the feedback from economic variables to criminal activity, but the fact that imposed sentences affect persons with different incomes differently. Their model is further different from ours in that jury beliefs and decisions are not modeled; instead, all individuals have the same probability of getting caught and convicted after committing a crime. In our model, not only do racial groups differ in their crime rates, but conditional on having committed a crime a member of the disadvantaged group is more easily convicted; this is a consequence of the assumption that jurors are Bayesian updaters. Finally, unlike our paper, it is not

6Coate and Loury (1993) conclude by proposing a remedy for this situation: An affirmative action policy which mandates that employers achieve equal outcomes, i.e. job assignments must reflect the proportion of subgroups in the population, regardless of the process by which the assignments are reached. As noted in the previous section, affirmative action in the labor market cannot necessarily be expected to eliminate prejudice in the courts, and implementing “affirmative action” directly in the courts seems infeasible.
possible in Verdier and Zenou (2004) to generate a situation in which all working persons have the same wage rate, and nevertheless there are ex-post differences in crime rates across races (in Section 6.1 we show that this can happen in a dynamic version of our model.)

A series of recent papers examines the motivation of police officers to engage in racial profiling; these include contributions by Knowles, Persico, and Todd (2001), Persico (2002), Alexeev and Leitzel (2004), and Bjerk (2007). While similarly motivated, there are several important differences between our paper and this literature. First, we focus on biases in the judicial system and not on biases in policing per se. Second, and more importantly, in all of these papers the racial subgroups differ in important economic characteristics, such as the fraction of members that are at risk of carrying contraband, which are imposed ex-ante. From a conceptual viewpoint, these models are best compared to the first part of our paper, where we assume that individuals differ in more than just their racial labels. (This part serves as a building block to the second part, where all economic differences emerge endogenously.) Hence, while self-confirming beliefs are an important aspect of the equilibria in those models, the equilibria themselves are not sunspot equilibria. The equilibrium feedback of racial profiling on crime works actually in the opposite direction as in our paper: (Rational) racial profiling by the police equalizes crime rates ex-post across populations, where ex-ante the propensity to commit crimes was different. In our paper, the jury’s (rational) prejudice causes ex-post differences in the propensity to commit crimes, where ex-ante no such differences existed.

Finally, our paper contributes to the literature on the optimal use of fines and imprisonment. Becker (1968) and Posner (1992) note that, since it is costly to imprison someone and since fines are simply a transfer from one individual to another, society should prefer to use fines, all else equal. Since imprisonment is quite common, however, a literature has arisen to explain its prevalence. Polinsky and Shavell (1984) note quite simply that, since fines are socially costless and prison is costly, the optimal punishment scheme would use fines to confiscate an individual’s wealth, and then trade off monitoring costs with costs of imprisonment (if necessary) to achieve the appropriate amount of deterrence. Polinsky and Shavell also note that the deterrence effect of a given prison term depends on an individual’s wealth. Given that imprisonment is a fairly common form of punishment, and often not accompanied by fines, Levitt (1997) offers an explanation for this observation. When the courts cannot observe a convicted criminal’s wealth, fines may have limited effect as criminals would simply claim to have insufficient wealth to pay them. If the social planner offers the criminal a choice between imprisonment and a fine, it may then be possible to increase deterrence without incurring the costs associated with simply using imprisonment. This paper contributes to this literature by identifying an additional social cost associated with imprisonment: the possibility of increased crime arising from self-confirming beliefs about criminality.
3 A Simple Model of Crime and Prejudice

We present a model in which an agent must decide whether or not to commit a crime, and a judge or jury must decide whether or not to convict a defendant accused of committing a crime. We assume that the agent is characterized by an exogenously given, publicly observable type \(w \in [w, \infty) \), with \(w > 0 \). The type \(w \) will represent an agent's wealth or income and may affect the jury's beliefs. The exogeneity of \(w \) is a temporary assumption—we will do away with it in due time and replace it with fixed and publicly observable race labels (that are not connected to payoffs except through the behavior of agents). However, because race affects prejudice through economic variables, we defer the introduction of race until Section 5, and focus on economic variables in this section and the next.

3.1 Timing of events

The timing is as follows: First, the agent observes privately a value \(\eta \in [0, \infty) \), drawn according to a continuous distribution \(Q \) with support \([0, \infty)\); this distribution is independent of \(w \). Second, after the agent observes \(\eta \) he decides whether to commit a crime \((d = 1)\) or not \((d = 0)\). If the crime is committed, the agent receives instantaneous utility \(\eta \), and an investigation is initiated. If the agent does not commit the crime, there is a probability \(\lambda \in (0, 1) \) that an investigation is initiated "by accident." If this happens, the agent does not consume \(\eta \) but may still be found guilty of the crime.

If under investigation, a random amount of evidence \(t \in [0, 1] \) against the agent will be discovered. In case a crime has in fact been committed, \(t \) is a random draw from distribution \(F \). In case of accidental investigation, \(t \) is drawn from distribution \(G \). We assume that \(F \) and \(G \) have support \([0, 1]\), are continuous with density \(f \) and \(g \), respectively, and that the ratio \(f(t)/g(t) \) increases strictly in \(t \). A higher value of \(t \) hence means stronger evidence against the agent. We further make the technical assumptions that \(0 < f(0) < \infty \) and \(0 < g(0) < \infty \).

After the evidence is discovered, the agent has to stand trial and becomes a defendant. At trial, a judge observes \(w \) as well as \(t \) and forms belief \(\theta(w, t) = P[d = 1|w, t] \), representing the probability of guilt of the agent. The agent is convicted of the crime if \(\theta(w, t) \geq \alpha \), where \(\alpha \in (0, 1) \) represents the standard of proof. The interpretation of \(\alpha \) is that courts must determine whether or not the evidence establishes the defendant’s guilt beyond a "reasonable doubt." In our model, \(\alpha \) quantifies what is "reasonable." If the agent is not investigated, or if he is investigated and subsequently acquitted, he receives utility \(u(w) \). Regarding the utility function \(u \), we assume it is twice differentiable with \(u'(w) > 0 \) and \(u''(w) \leq 0 \). If the agent is convicted, he is sentenced to a punishment which reduces his utility by \(\Delta(w) \) on him. We will describe the possible penalties available in more detail below. Figure 1 depicts the timing of events in a "game tree" (the agent’s payoffs are given at the terminal nodes of the tree).

It is worth discussing our assumption about accidental investigations at this point. From a technical perspective, it introduces the possibility that a person who faces trial is innocent. If this possibility did not exist, the jury’s prior beliefs and the updating problem would become trivial (every defendant would be guilty). From a conceptual perspective,
there are several interpretations. One is that the agent is charged with a crime that has in fact happened, but which was committed by a third person. This interpretation would introduce some complications to our model. For instance, it would then be possible that one person can be convicted of two crimes, one that he committed and one that he did not commit. This interpretation will be examined in Section 6.2. Here, we consider a simpler model instead, in order to make the intuition for our results clearer.

The current model entails an agent who must decide whether to commit an act knowing that he may be held responsible even if he did not commit it. A scenario where this applies to is tort law. For instance, damaging events may take place which may be the result of negligence, or not, and at trial it must be determined whether the agent should be held responsible. In the case of accidental torts, η can be interpreted as the utility benefit from not taking precautions; for intentional torts, η may represent some other benefit. Consider, for example, the case of a corporate bankruptcy which causes losses to the shareholders. The bankruptcy can be the result of fraudulent actions on part of the management, a crime that might have lead to greater income for those involved, but it can also simply be the result of bad business decisions or unforeseen shocks to the economic environment, neither of which would lead to liability on the part of the management. The probability λ in the model would then represent the probability of such unforeseen shocks and the
subsequent investigation of the company’s management.

3.2 Penalties

We now consider the different forms of possible punishments more explicitly. A penalty schedule is a mapping \(\rho : [w, \infty) \rightarrow [w, \infty) \) such that \(\rho(w) \leq w \). When sentenced to a penalty \(\rho \), the agent’s wealth will be decreased by \(\rho(w) \). The utility loss to the agent is therefore \(\Delta(w) = u(w) - u(w - \rho(\delta)) \). Listed below are a few important cases of penalties.

Imprisonment. If sentenced to prison, the agent’s wealth will be reduced to a uniformly low level \(w_0 \), which is independent of the agent’s type outside of prison. Thus, a prison sentence is given by the penalty schedule \(\rho(w) = w - w_0 \). The utility loss to the agent is therefore \(\Delta(w) = u(w) - u(w - \delta) \).

Simple fine. If sentenced to pay a simple fine, the agent’s wealth will be decreased by a fixed amount \(\delta \). This is described by the penalty schedule \(\rho(w) = \delta \), and the utility loss to the agent is \(\Delta(w) = u(w) - u(w - \delta) \).

Proportional fine. If sentenced to pay a proportional fine, the agent’s wealth is reduced by a fraction \(\gamma \in (0, 1) \); thus \(\rho(w) = \gamma w \). The utility loss to the agent is therefore \(\Delta(w) = u(w) - u((1 - \gamma)w) \).

Since the utility loss \(\Delta \) depends on the type of punishment being used, different penalty forms have different effects on individuals of lower and higher income types. In general, it depends on both the properties of the utility function \(u \) as well as on properties of the penalty schedule \(\rho \) whether higher or lower types are penalized more severely. However, if punishment is imprisonment, \(\Delta \) increases in \(w \), so a prison sentence clearly is a more severe punishment for higher types than it is for lower types. If the punishment is a fine \(\delta \), on the other hand, \(\Delta \) decreases in \(w \) as long as agents are strictly risk averse. In this case, a simple fine works exactly in the opposite direction as a prison sentence.

3.3 Bayesian beliefs at trial

At trial, the judge forms the posterior belief \(\theta(w, t) \) through Bayesian updating. Specifically, let \(p(w) \) denote the judge’s prior belief that an individual of type \(w \) commits a crime. We will call \(p(w) \) the prejudice held against individuals of type \(w \). The Bayesian likelihood that the investigated individual of type \(w \) is guilty, conditioning on evidence \(t \), is then

\[
\theta(w, t) \equiv P[d = 1|w, t] = \frac{p(w)f(t)}{p(w)f(t) + \lambda (1 - p(w))g(t)} \in [0, 1].
\]

(1)

Given that \(f(t)/g(t) \) increases, \(\theta(w, t) \) increases in \(t \) and in \(p(w) \). For a fixed \(\alpha \), let \(t(w) \) be such that

\[
\alpha = \theta(w, t(w));
\]

\(t(w) \) is then the conviction threshold that is applied to individuals of type \(w \). While \(\alpha \) is fixed for all defendants, the amount of evidence \(t(w) \) required to prove guilt beyond probability \(\alpha \) can depend on income \(w \).
3.4 The defendant’s decision

Let \(m_1(w) \) denote the probability that an individual of type \(w \) is convicted conditional on having committed the crime, and let \(m_0(w) \) denote the probability that the same individual is (wrongfully) convicted conditional on not having committed the act. The crime is committed if and only if the benefit from doing so exceeds its cost:

\[
\eta > q(w) \equiv [m_1(w) - m_0(w)] \Delta(w),
\]

where \(\Delta(w) \) is the utility loss of the agent when punished, and the difference \(m_1(w) - m_0(w) \) is the increase in the likelihood of suffering this loss when committing the crime. The product \(q(w) = [m_1(w) - m_0(w)] \Delta(w) \) is then the expected cost of committing the crime, so that the defendant decides to commit the act when the benefit of doing so, \(\eta \), exceeds the expected cost, \(q(w) \).

We can express the probability of conviction following a crime from the agent’s perspective as

\[
m_1(w) = P[\theta(w, t) \geq \alpha | d = 1] = P[t \geq t(w) | d = 1] = 1 - F(t(w)),
\]

and the probability of wrongful conviction as

\[
m_0(w) = \lambda P[\theta(w, t) \geq \alpha | d = 0] = \lambda P[t \geq t(w) | d = 0] = \lambda (1 - G(t(w))).
\]

3.5 Rational expectations equilibrium

An equilibrium will be a tuple \((p, q, t)\), where \(p : [w, \infty) \to [0, 1] \) is the prior belief for the judge, \(q : [w, \infty) \to [0, \infty) \) is the decision threshold for the agent, and \(t : [w, \infty) \to [0, 1] \) is the conviction threshold; all of these are functions of the agent’s type. We call \((p^*, q^*, t^*)\) an equilibrium if it solves the following system of equations for all \(w \):

\[
p^*(w) = 1 - Q(q^*(w)) \tag{2}
\]

\[
q^*(w) = [1 - F(t^*(w)) - \lambda (1 - G(t^*(w)))] \Delta(w) \tag{3}
\]

\[
\theta(w, t^*(w)) = \alpha \tag{4}
\]

Condition (2) says that in equilibrium, the prejudice toward a defendant of type \(w \), \(p^*(w) \), is consistent with the probability that agents of type \(w \) actually commit crimes. Condition (3) says that the decision of a type \(w \) agent to commit a crime, given by \(q^*(w) \), is optimal given the conviction thresholds \(t^*(w) \) applied to this agent. Condition (4) says that the conviction threshold be such that a conviction occurs if and only if the evidence establishes the defendant’s guilt beyond probability \(\alpha \), where this probability is computed by Bayes’ Rule using the judge’s prejudice \(p^*(w) \) as the prior. The equilibrium is hence one of rational expectations. We begin with establishing existence.

Lemma 1. A rational expectations equilibrium exists.

Note that Lemma 1 does not preclude the existence of multiple equilibria. If multiple equilibria exist, then it is obvious that groups that do not differ in their economic fundamentals could differ in their criminal behavior: One group could simply be in a low
crime equilibrium while the other is in a high crime equilibrium. In order to explain why
groups differ in their equilibria, one could then appeal to a story as in Sah (1991). If one
group had historical reasons to have higher crime rates, say because they were historically
poorer, then differences in crime rates could persist even after differences in the economic
fundamentals were eliminated.

Of more interest, however, is that such differences can arise even when there exists a
unique equilibrium outcome to the model as thus far described. (This, of course, requires
an additional feedback channel, namely from from beliefs to income, which we will intro-
duce in Section 5.) We therefore continue by finding a condition for uniqueness. In order
to do so, we define

$$\lambda \equiv \frac{f(0)}{g(0)}.$$

Given our assumptions on f and g, it will be the case that $0 < \lambda < 1$. We then have the
following result:

Lemma 2. If $\lambda \leq \bar{\lambda}$, the rational expectations equilibrium is unique.

Below, we will be concerned with how the equilibrium values for $p^*(w)$, $q^*(w)$, and
t$^*(w)$ vary with w. Note that w enters the equilibrium definition directly only in condition
(3), i.e. the condition stating that the agent’s crime decision be optimal. Suppressing the
dependence on w, this condition is

$$q = [1 - F(t) - \lambda(1 - G(t))] \Delta.$$

Intuitively, we expect q to increase in Δ and decrease in t. Note that $1 - F(t) - \lambda(1 - G(t))$
is weakly decreasing in t if and only if $\lambda \leq f(t)/g(t)$. Since $f(t)/g(t)$ is increasing by
assumption, if $\lambda \leq \bar{\lambda}$ then $1 - F(t) - \lambda(1 - G(t))$ is non-increasing for all t. For all $\lambda \leq \bar{\lambda}$,
we therefore get

$$\lambda \leq \bar{\lambda} \Rightarrow \frac{\partial}{\partial t} q = [-f(t) + \lambda g(t)] \Delta \leq 0. \quad (5)$$

Thus, if $\lambda \leq \bar{\lambda}$, an increase in the conviction threshold t indeed leads to a decrease in the
decision threshold q of the agent. Furthermore, since $1 - F(1) - \lambda(1 - G(1)) = 0$, we have

$$\lambda \leq \bar{\lambda} \Rightarrow \frac{\partial}{\partial \Delta} q = 1 - F(t) - \lambda(1 - G(t)) = -\int_{t}^{1} [-f(s) + \lambda g(s)] ds \geq 0. \quad (6)$$

Thus, if $\lambda \leq \bar{\lambda}$, an increase in the potential penalty Δ leads to an increase in the decision
threshold q of the agent.

These preliminary observations allow us to characterize the equilibrium further. In
particular, we will state several results concerning prejudice. We call an equilibrium
biased against lower types if

$$w > w' \Rightarrow p^*(w) < p^*(w'), \ t^*(w) > t^*(w'), \text{ and } q^*(w) > q^*(w').$$

That is, the judge is prejudiced in favor of higher types and applies a higher conviction
threshold to higher types, and higher types are less likely to commit a crime. Similarly,
an equilibrium **biased against higher types** if the reverse inequalities hold:

$$w > w' \Rightarrow p^*(w) > p^*(w'), \ t^*(w) < t^*(w'), \text{ and } q^*(w) < q^*(w').$$

Finally, if p^*, q^* and t^* are constant, the equilibrium is **unbiased.**
4 Penalties and Equilibrium Bias

We begin with a general result concerning the potential bias that can arise in equilibrium. (As before, we assume that the defendant’s income \(w \) is exogenously given and observed by the jury.)

Lemma 3. Suppose \(0 < \lambda \leq \bar{\lambda} \), and let \((p^*, q^*, t^*)\) be the unique equilibrium. The equilibrium is (i) biased against higher types when \(\Delta \) strictly decreases in \(w \), (ii) biased against lower types when \(\Delta \) strictly increases in \(w \), and is (iii) unbiased if \(\Delta \) is constant.

With this result in mind, we are now ready to compare different forms of punishment with respect to whether they lead to biased equilibria or not, and if they do, whether the bias is against lower types or against higher types. In our analysis, punishments differ only in terms the utility loss \(\Delta(w) \), they impose on defendants of type \(w \). The following results are therefore all direct consequences of Lemma 3.

We begin by describing the general penalty schedule that leads to unbiased equilibria. By Lemma 3, the equilibrium is unbiased if \(\Delta \) is a constant, i.e. \(\Delta(w) = \bar{\Delta} \) or \(\Delta'(w) = 0 \) \(\forall w \):

\[
\Delta'(w) = u'(w) - (1 - \rho'(w))u'(w - \rho(w)) = 0,
\]

so that unbiasedness requires \(\rho \) to satisfy the following differential equation and initial condition:

\[
\rho'(w) = 1 - \frac{u'(w)}{u'(w - \rho(w))},
\]

\[
\rho(w) = w - u^{-1}(u(w) - \bar{\Delta}),
\]

Condition (9) describes the punishment applicable to type \(w \) to achieve the desired utility loss \(\bar{\Delta} \). The differential equation (9) then describes how to trace out the penalty schedule \(\rho \) that maintains the same utility loss for all types.\(^7\) This particular penalty schedule, given in (9), describes a knife-edge case in that it characterizes those penalties which lead to unbiased equilibria. Before turning to biased equilibria, we show that the knife-edge case can be achieved by simple and proportional fines, respectively, if the utility function \(u \) satisfies particular properties:

Theorem 4. The equilibrium is unbiased in the following special cases:

(a) Punishment is by a simple fine and agents are risk-neutral, i.e. \(u''(w) < 0 \) \(\forall w \).

(b) Punishment is by a proportional fine and agents have constant relative risk aversion of 1. That is, \(\rho(w) = \gamma w \) for some \(\gamma \in (0, 1) \), and \(u(w) = a \ln w + b \) for some \(b \) and some \(a > 0 \).

\(^7\)Note that (9)–(9) describe the solution to a design problem which is not unlike the classical mechanism design problem. Similar to an incentive compatibility constraint, the unbiasedness requirement leads to a solution in terms of the slope of the design object, and similar to an individual rationality constraint, the fact that a certain deterrence effect must be created for the lowest type yields an initial condition.
Let us now consider under which conditions the equilibrium is biased. By Lemma 3, \(\Delta'(w) > 0 \) implies that the equilibrium will be biased against lower types. We can therefore derive a condition similar to (9), that is, the equilibrium is biased against lower types if the penalty schedule satisfies
\[
\rho'(w) > 1 - \frac{u'(w)}{u'(w - \rho(w))}.
\]
Likewise, it is biased against higher types if the reverse inequality holds,
\[
\rho'(w) < 1 - \frac{u'(w)}{u'(w - \rho(w))}.
\]
Of course, given any schedule \(\rho \), it need not be the case that the equilibrium is monotone in \(w \), as the resulting \(\Delta(w) \) may not be monotone in \(w \). As far as prison sentences and simple fines are concerned, however, we can make the following statement:

Theorem 5. Suppose \(0 < \lambda \leq \bar{\lambda} \), and let \((p^*, q^*, t^*)\) be the unique equilibrium.

(a) If punishment for convicted agents is by imprisonment, then \((p^*, q^*, t^*)\) is biased against lower types.

(b) If punishment for convicted agents is by a simple fine, and agents are strictly risk averse (i.e. \(u''(w) < 0 \ \forall w \)), then \((p^*, q^*, t^*)\) is biased against higher types.

In general, the shape of \(\Delta \) depends on the shape of the both the utility function \(u \) and the penalty schedule \(\rho \). In the following, we derive sufficient conditions for monotonicity of \(\Delta \), and hence for a bias in favor of higher or lower types, respectively. Let \(R(w) \) denote the coefficient of relative risk aversion of \(u \) at \(w \):
\[
R(w) = -w \frac{u''(w)}{u'(w)}.
\]
Further, let \(\varepsilon(w) \) denote the income elasticity of \(\rho \) at \(w \):
\[
\varepsilon(w) = w \frac{\rho'(w)}{\rho(w)}.
\]
We can then show that the following holds:

Lemma 6. Suppose punishment for convicted agents is given by penalty schedule \(\rho \). Suppose \(0 < \lambda \leq \bar{\lambda} \), and let \((p^*, q^*, t^*)\) be the unique equilibrium. Then \((p^*, q^*, t^*)\) is biased against higher types if \(R(w) > 1 \) and \(\varepsilon(w) \leq 1 \ \forall w \), and it is biased against lower types if \(R(w) < 1 \) and \(\varepsilon(w) \geq 1 \ \forall w \).

Hence, it is possible to extend the result of Theorem 4 (b): In the special case of a proportional fine, the income elasticity of the fine is zero, i.e. \(\varepsilon(w) = 0 \). Whether the equilibrium is biased lower or higher types depends then only on whether the coefficient of relative risk aversion \(R(w) \) is always below or above one.
It should be noted that, even when the equilibrium is biased, the judges’s prejudice is consistent with the true likelihood that agents of various types commit crimes. Furthermore, in equilibrium agents with differing types take into account that there is a different chance of conviction if they commit a crime than for agents of other types. For example in the case of imprisonment, the prejudice against an agent is decreasing with his type, so agents with higher types know that they are more likely to avoid punishment when committing a crime. However, in equilibrium higher types are still less likely to commit crime than lower types (i.e. \(q^*(w) > q^*(w') \) if \(w > w' \)).

We have thus established conditions for the treatment an individual receives from the courts to be dependent on their wealth. The story thus far suggests, however, that people of the same wealth, but that differ in other characteristics, should be treated the same. In the next section, we allow for income to be determined endogenously, and find that bias in the courts based on wealth can in fact lead to bias based on other characteristics.

5 Non-economic Types and Statistical Discrimination

In this section, we dispose of the assumption that agents differ in terms of their incomes \(w \) ex-ante. We instead assume that all agents are ex-ante alike with respect to economic characteristics such as their productivity, human capital, etc., which can influence a person’s income. There are now \(L \geq 2 \) subgroups of the population, and membership in one group is merely a label \(l \in \{1, \ldots, L\} \) without economic significance. This label could be race, gender, nationality, or ethnicity. An agent’s group label is publicly observable, and all differences in the realized value of an agent’s income are the direct result of the bias held against the agent’s group in the justice system. If such real inter-group differences arise endogenously ex-post, then such outcomes are “sunspot equilibria.”

To justify the assumption that an agent’s income is a function of prejudice, note that it may simply be harder for a person who is assumed to be more prone to criminal behavior to find a job, or to find a high-paying job, resulting in lower income. This can be the case for a myriad of reasons. Criminal activity may adversely affect an individual’s productivity, or criminal activity may directly be targeted at the employer (e.g. stealing from a job site). Further, if there are training costs for new employees and employers expect that members of certain groups are more likely to be convicted of a crime and be sent to jail, then hiring a member of the disadvantaged group has a larger expected cost because this individual’s duration in employment is on average shorter. Alternatively, the qualifications required to be employed at a given wage can be costly to obtain and training must be paid by the individual in form of tuition or foregone income while at school. An individual’s decision to acquire these qualifications will depend on their expected return, which will be lower for those individuals who are likely to be incarcerated in the future. We do not focus on any particular such story, and instead take a reduced form approach. Specifically, we assume

\[8\] Of course, what we call “non-economic characteristics” can also be a-priori correlated with economically meaningful variables. A woman’s productivity as a lumberjack is presumably on average lower than a man’s, and a French person may on average be a better food critic than a British person. We assume such cases away in our model.
that there is a weakly decreasing and continuous function \(v : [0,1] \rightarrow [w, \bar{w}] \) \((w < \bar{w} < \infty)\) which describes an agent’s income as a function of the prejudice held against the group to which he belongs.

Since the only observable difference between agents is that they belong to different subgroups of the population, replace the prejudice \(p(w) \) against persons of income \(w \) by a prejudice \(p_l \) against persons who belong to group \(l \). Similarly, replace \(q(w) \) by \(q_l \), and \(t(w) \) by \(t_l \). An equilibrium in this case is now a collection \((w^*_l, p^*_l, q^*_l, t^*_l))_{l \in \{1, \ldots, L\}}\) such that for all \(l \in \{1, \ldots, L\}\),

\[
\begin{align*}
p^*_l &= 1 - Q(q^*_l), \\
q^*_l &= [1 - F(t^*_l) - \lambda(1 - G(t^*_l))] \Delta_l, \\
\theta(p_l, t^*_l) &= \alpha, \\
w^*_l &= v(p^*_l),
\end{align*}
\]

where \(\Delta_l = u(w^*_l) - u(w^*_l - \rho(w^*_l)) \) is defined as before. This is essentially the same set of defining equations as (2)–(4), except that a fourth condition has been added (condition (13)). This condition states that the equilibrium income level of group \(l \), \(w^*_l \), must be consistent with the prejudice level \(p^*_l \) held against group \(l \). We now say an equilibrium is biased if there exist \(l, l' \in \{1, \ldots, L\} \) such that \(p^*_l > p^*_{l'} \). An equilibrium is unbiased if \(p^*_1 = \ldots = p^*_L \).

Equilibria can be constructed from the points of intersection of two curves in \(p-w \) space. The first curve is the locus of all \((p, w)\) pairs such that \(p = p^*(w) \), where \(p^*(w) \) is the equilibrium prejudice against an individual of income \(w \), given by (2) of the simple model. The second one is the graph of the income function \(v(p) \). Let

\[
S = \{(p, w) \in [0,1] \times [w, \bar{w}] : p = p^*(v(p))\}
\]

be the set of all intersecting points of the two curves. An equilibrium in the model with endogenous income can then be constructed by assigning to each group \(l \in \{1, \ldots, L\} \) a point in \(S \), corresponding to the prejudice \(p^*_l \) against group \(l \), and the income level \(w^*_l \) of its members. The conviction threshold applied to defendants from group \(l \), \(t^*_l \) can then be computed from (12), and the decision threshold which agents from group \(l \) use, \(q^*_l \), can be computed from (11).

If \(S \neq \emptyset \), then an equilibrium exists. The following states a sufficient condition for existence:

Lemma 7. Regardless of the punishment used, if \(0 < \lambda \leq \bar{\lambda} \) there exists an equilibrium in the model with endogenous income.

If an equilibrium exists, there is always an unbiased equilibrium, as all groups can be assigned the same \((p, w)\)-pair. Whenever \(S \) contains more than one element, there are also biased equilibria, as any assignment of groups to \((p, w)\)-pairs contained in \(S \) represents an equilibrium in the extended model. Thus, if \(|S| > 1 \), there is an equilibrium in which \(p^*_l \neq p^*_{l'} \) for \(l \neq l' \), and also \(w^*_l \neq w^*_{l'} \), namely if \((p^*_l, w^*_l) \in S \) and \((p^*_l, w^*_l) \in S \). The following result mirrors Lemma 3.
Lemma 8. Fix $w > 0$ and $\bar{w} > w$. Let \mathcal{D} be the set of all continuous, decreasing functions $v : [0, 1] \rightarrow [w, \bar{w}]$. Suppose $\lambda \leq \bar{\lambda}$.

(a) If Δ strictly decreases in w, or is constant, then for all $v \in \mathcal{D}$ there is a unique equilibrium, and this equilibrium is unbiased.

(b) If Δ increases in w, there exists a generic set $\mathcal{D}_0 \subset \mathcal{D}$ such that for all $v \in \mathcal{D}_0$, a biased equilibrium exists.

The next result follows then immediately from Lemma 8 (a proof is therefore omitted):

Theorem 9. Fix $w > 0$ and $\bar{w} > w$. Let \mathcal{D} be the set of all continuous, decreasing functions $v : [0, 1] \rightarrow [w, \bar{w}]$. Suppose $\lambda \leq \bar{\lambda}$.

(a) If convicted offenders are punished by a simple fine, then for all $v \in \mathcal{D}$ there is a unique equilibrium, and this equilibrium is unbiased.

(b) If convicted offenders are punished by imprisonment, there exists a generic set $\mathcal{D}_0 \subset \mathcal{D}$ such that for all $v \in \mathcal{D}_0$ a biased equilibrium exists.

Figure 2 depicts the case of Theorem 9 (b), where $v \in \mathcal{D}_0$. With prison as punishment for convicted agents, the p^*-curve is increasing, and it is not hard to plot a continuous and decreasing v-curve which intersects the p^*-curve several times. As stated in Theorem 9 (b), there is a generic set of v-curves for which this happens. In our example there are three intersections ($|\mathcal{S}| = 3$), so that one can construct equilibria with up to three

![Figure 2: Biased equilibrium when punishment is by imprisonment](http://law.bepress.com/alea/17th/art50)
different endogenous income levels. We depict an example with two groups: Group 1 earns a relatively high income \(w^*_1 \) and faces a relatively low prejudice \(p^*_1 \). The opposite holds for group 2.

In contrast, Figure 3 shows the case of the same \(v \)-curve as before, but a simple fine is used instead of prison to punish convicted agents. This corresponds to Theorem 9 (a). In this case the \(p^* \)-curve is strictly increasing, and it is easy to see that there cannot be multiple intersections of \(p^* \) and \(v \) now. Thus the only equilibrium is an unbiased one, where both groups earn the same income and face the same prejudice.

![Figure 3: Unbiased equilibrium when simple fines are used](image)

6 Extensions

In this section, we show how our model can be extended by introducing dynamics (Section 6.1) and the possibility of multiple offenses (Section 6.2). The merits of these extensions are described in detail below.

6.1 A Dynamic Link from Prejudice to Income

When punishment is by imprisonment, we have shown that there exists a possibility for discriminatory equilibria, where racial groups differ in terms of their crime rates, but also in terms of their incomes. This required there to be some feedback from the (perceived) proneness to crime of an individual to the individual’s income. We modeled this feedback in “reduced form” by assuming there be a downward sloping function \(v \) that mapped
an individual’s perceived crime rate to income. In equilibrium of such a model, both
membership in a certain racial group, or an individual’s income, can then explain the
likelihood that the individual is convicted of a crime. There is, however, empirical evidence
(cited in the introduction) that race is a significant predictor of criminal activity after
controlling for wages and a number of other economic variables. In this section, we show
that when introducing a temporal dimension to our model, this empirical observation can
be reconciled. In particular, by using expected lifetime earnings as the relevant income
variable, we show that the sanctions imposed by the courts on convicted criminals can be
directly responsible for differences in lifetime earnings.

Suppose employers offer (voluntarily or by law) the same wage to everybody, as long
as they possess the same economically relevant qualifications, such as academic degrees or
technical diplomas. However, members of one group are more likely to spend some time of
their lives in prison than others. They will hence receive the same wage as everybody else
when they work, but over a stochastically shorter period of time. For simplicity, assume
that only life sentences are given. Then individuals who face a strong prejudice on average
will go to jail sooner—thus their expected lifetime earnings they stand to lose from the
sentence are lower, compared to individuals who face a lesser prejudice. Consequently,
they are less likely to be deterred by the threat of losing this expected future income,
and more likely to commit crimes, making this an equilibrium again. The difference is
now that a worker’s per-period wage income has no predictive power regarding criminal
activity, but membership in racial groups has. Furthermore, it is not discrimination in the
labor market, but the criminal justice system itself, that provides the causal link between
prejudice and income. If wage differences exist that are due to differential treatment by
employers, affirmative action that mandates non-discriminatory treatment in the labor
market could help eliminate this problem (similar to the argument made by Coate and
Loury (1993)). However, in the case we consider here, such policies will have no effect at
best, as employers pay the same wage to all workers already.

We assume that agents live for infinitely many periods. At the beginning of each
period, an agent will work and earn a fixed wage of y, unless he is in prison in which case
he earns zero. There is no saving technology, and all income is consumed in the period
it is earned. At the end of each period, the events described in Section 3 unfold: Agents
observe their η-shocks and decide whether to commit the crime or not (the η-draws are
assumed i.i.d. across agents and time), and must possibly stand trial. At the end of
the period, the agent is then either a convicted criminal or not. If an agent is convicted
(rightfully or wrongfully), he is removed from employment and sentenced to life in prison.
This sentence represents a permanent reduction in income.9 Otherwise, the agent starts
the next period as a working individual. In computing their expected lifetime earnings,
agents apply a common discount factor $\beta < 1$ and do not include the future realizations
of η. This is a behavioral assumption, of course, but unless η is literally regarded as
the material benefit from a crime (for instance money stolen), this assumption seems not

9We expect that the results we derive continue to hold for sufficiently long but finite prison sentences,
as the crucial feature of this penalty is not so much the duration of time over which it is applied, but that
it reduces the agent’s lifetime income to a fixed level.
unreasonable. For example, one interpretation of \(\eta \) is that it represents the short-lived “kick” an individual gets from the crime. For offenses such as the consumption of illegal substances, it seems very natural to impose such a strong bias for the presence regarding the benefit \(\eta \).

To solve this model, note that at the time the agent has observed the current period’s value of \(\eta \) and must decide whether or not to commit a crime, the expected lifetime consumption for an agent from the next period on, conditional on entering the next period as a free individual, is

\[
v(p) = \frac{\beta}{1 - \beta \xi(q,t)} y,
\]

where

\[
\xi(q,t) = [1 - Q(q)] F(t) + Q(q) [1 - \lambda(1 - G(t))]
\]

is the period-to-period “survival probability” associated with the tuple \((q,t)\). Since a given value for \(p\) pins down \((q,t)\) via (2)–(4), we can write \(v\) as a function of \(p\), as in (14).

We now show that this dynamic model can give rise to a discriminatory equilibrium, even though in this equilibrium every worker earns the same fixed wage \(y\). To show that this can happen, we use an example using the following parameter values:

\[
y = 1, \alpha = 0.95, \beta = 0.95, \lambda = 0.01, \eta \sim U[0, 5], F(t) = t^2, G(t) = 2t - t^2.
\]

Note that this is not entirely in line with some of our previous assumptions; for instance \(f(0) = 0\) and \(\eta\) is bounded in this example. However, those assumptions were made earlier because they were sufficient to ensure equilibria existed and had the properties we identified. They are not necessary, however, and our example illustrates that the same biased outcomes can also arise in other cases were the assumptions are violated.

We compute the \(v(p)\) and \(p^*(w)\) numerically. The result is plotted in Figure 4. One can see that there are in fact three intersections of the two curves. Thus, if there are two or more racial (or otherwise distinguishable) groups in the population, whose members all earn \(y = 1\) when not incarcerated, biased equilibria can arise simply because two different groups can be “assigned” different prejudice-lifetime income pairs which correspond to the intersections in Figure 4.

This dynamic model provides an explanation for why some individuals choose to live a “life of crime,” and why this choice may be correlated with characteristics such as race. Consider an individual in the high crime/low lifetime income group. Each time he decides whether to commit a crime or not, he compares the benefit \(\eta\), which is distributed equally across the entire population, against the expected cost. The expected cost is that the individual (with some probability) loses his criminal career and goes to jail. However, continuing a life of crime is not a very enticing prospect either, because a career criminal
Figure 4: Numerical example ($v(p)$ is expected discounted lifetime income)

expects to be jailed sooner or later anyways. Hence, such a person is less likely to be deterred by this prospect. The opposite holds for the choice to live a low-crime life, and the usual stereotyping argument can be made to sort individuals into different such equilibria, based on their race or other observable characteristics. The crucial aspect here is that, because race is observable and cannot be altered, it is not possible for individuals to break out of the high-crime equilibrium—they would be treated in an adverse manner by the courts even if they decided not to commit crime ever. Note that this result relies on the difference in the deterrence effect that long prison sentence have for members of the different subgroups. The same story could not be told in an alternative framework where instead of the cost of crime the benefit was different across groups (as would be the case, for example, if we focused on property crime and assumed that poorer individuals could gain more from stealing).

6.2 Multiple Offenses and Escalating Sanctions

Penalties are often escalated when a person is convicted multiple times. Several states in the U.S., for example, have adopted so-called three strikes laws according to which the third felony conviction results in a life sentence (several states have opted for even tougher two strikes laws). Stigler (1970), and recently Emons (2006), provide theories of escalating sanctions. In this section, we show that multiple offenses and multiple sanctions (including escalation) can be incorporated into our basic model in a straightforward way, and interpreted from the perspective of their potential for discriminatory equilibria. In addition, an extension of the model to multiple offenses provides an alternative inter-
pretation for the “investigation by accident” assumption we have made until now: We
needed this assumption to create the possibility that an innocent defendant is convicted;
this was needed to generate non-trivial conviction thresholds. The same possibility now
arises because a defendant may be convicted of a crime that has actually occurred but
was committed by a third person.

The model is as before, with the exception that, when agents decide whether to commit
a crime, they do so knowing that there is a probability they may be convicted of some
other crime. Thus an individual may be convicted of zero, one or two crimes. Let \(\rho_1 : [w, \infty) \rightarrow [w, \infty) \) and \(\rho_2 : [w, \infty) \rightarrow [w, \infty) \) be the penalty schedule for the first and second
convictions, respectively. Note that we allow for the penalty for the first conviction to
differ from the penalty for the second.

As before, we consider the utility costs of these penalties. Define the utility cost from
the first penalty as \(\Delta_1(w) = u(w) - u(w - \rho_1(w)) \), and the utility cost of the second penalty
as \(\Delta_2(w) = u(w - \rho_1(w)) - u(w - rho_1(w) - \rho_2(w)) \). For the case of imprisonment, \(\rho_i(w) \)
denotes the wealth lost from the \(i^{th} \) prison sentence, \(i = 1, 2 \). In the case of fines, \(\rho_i(w) \) is
simply the monetary amount of the fine. As before, the utility losses \(\Delta_1 \) and \(\Delta_2 \) depend
on the type of punishment being used, and so different penalty forms may have different
effects on individuals of lower and higher types.

Let \(m_1(w) \) denote the probability that an individual of type \(w \) is convicted of a crime
that they did commit, and let \(m_0(w) \) denote the probability that the same individual is
(wrongfully) convicted of a crime they did not commit. Unlike before, however, if the
agent does not commit a crime, there is a chance, \(m_0(w) \), that the agent will still be
convicted and pay a penalty, \(\rho_1(w) \). If the agent does commit a crime, there is a chance,
\(m_0(w)m_1(w) \), that they will be convicted of two crimes. The crime is committed if and
only if the benefit from doing so exceeds its cost:

\[
\eta > q(w) \equiv m_1(w) [(1 - m_0(w))\Delta_1(w) + m_0(w)\Delta_2(w)],
\]

where \(\Delta_i(w), i = 1, 2 \) is the utility loss of the agent when punished for the \(i^{th} \) time. As
before, the probability of conviction following a crime is given by

\[
m_1(w) = P[\theta(w, t) \geq \alpha|d = 1] = P[t \geq t(w)|d = 1] = 1 - F(t(w)),
\]

and the probability of wrongful conviction is

\[
m_0(w) = \lambda P[\theta(w, t) \geq \alpha|d = 0] = \lambda P[t \geq t(w)|d = 0] = \lambda(1 - G(t(w))).
\]

Given the difference in the expected cost of committing a crime, we now have that the
tuple \((p^*, q^*, t^*) \) constitutes an equilibrium if it solves the following system of equations
for all \(w \):

\[
p^*(w) = 1 - Q(q^*(w)) \tag{15}
\]

\[
q^*(w) = \left[1 - F(t^*(w))\right] \left[(1 - \lambda(1 - G(t^*(w))))\Delta_1(w) + \lambda(1 - G(t^*(w)))\Delta_2(w)\right] \tag{16}
\]

\[
\theta(w, t^*(w)) = \alpha \tag{17}
\]
where equations (15) – (17) have the same interpretation as before. Note that only (16) is different, but it still is continuous with compact domain, and so the proof to the previous existence lemma applies here as well.

Lemma 10. A rational expectations equilibrium exists.

Before, we found that the equilibrium was unique as long as $q^*(w)$ was decreasing in $t^*(w)$. If we consider condition (16), and suppress the dependence on w, we have

$$q = [1 - F(t^*)][(1 - \lambda(1 - G(t^*)))\Delta_1 + \lambda(1 - G(t^*))\Delta_2].$$

We thus have

$$\frac{\partial q}{\partial t} = -f(t)[(1 - \lambda(1 - G(t)))\Delta_1 + \lambda(1 - G(t))\Delta_2] + [1 - F(t)] [\lambda g(t) (\Delta_1 - \Delta_2)]$$

$$= -f(t)\Delta_1 + \lambda [(1 - G(t)) f(t) + [1 - F(t)] g(t)] [\Delta_1 - \Delta_2]$$

(18)

and we have proved the following lemma:

Lemma 11. The rational expectations equilibrium is unique when $\Delta_2 > \Delta_1$.

Thus a sufficient condition for $\partial q/\partial t < 0$ and therefore uniqueness is $\Delta_1 < \Delta_2$. In other words, as long as second penalties are more severe in their utility costs, crime rates are uniquely determined by an individual’s wealth. It should be noted that, with respect to fines, $\Delta_2 > \Delta_1$ even when $\rho_2 = \rho_1$ because of diminishing marginal utility. However, with prison, an individual is likely to lose more income from the first sentence than the second, and so prison terms that increase in the number of convictions would be desirable.

Note that this provides an additional rationale for increasing (or at least non-decreasing) penalties, to complement the work of Emons (2006) and Stigler (1970). Note that even when the equilibrium is unique, it is still possible for groups that vary in non-economic characteristics (such as race) to differ in their crime rates through the mechanism described in section 5.

7 Conclusion

We developed a model that tied jury prejudice, the decision to commit crime, and conviction standards into a single framework. Within this framework, we were able to characterize the effects of different penalty forms, such as prison sentences or monetary sanctions, on beliefs and thus also on behavior. Making prejudice (i.e. beliefs) endogenous in the model allowed us to develop from it a theory of discrimination based on non-economic characteristics such as race. We now conclude the paper with a couple of remarks, concerning the implications of the paper and possible areas of further research.

First, our results have implications for the design, or reform, of criminal justice systems. We have compared the different effects of prison and monetary sentences on prejudice; the former being more likely to invite stereotyping than the latter. We do not intend to give a thorough survey of the advantages and disadvantages of fines vs. prison sentences here.
Nevertheless, we think our model has something to say about the various forms of penalizing felonies such as minor drug offenses. In the U.S. such crimes are routinely punished by incarceration, while European countries tend to use fines. The example of drug offenses is particularly interesting, as drug-related crime is responsible for a large fraction of the U.S. prison population10. In addition, those convicted for drug-related offenses are disproportionately Black or Hispanic11. If the possibility of statistical discrimination is a concern to those who draft sentencing laws, then the relationship between different forms of penalties and the effects they have on crime and prejudice should be taken seriously.

Second, note that our model (with prison sentences) produced two related phenomena: In the static version, sunspot equilibria could emerge in which people were treated differently by the courts based on their race. In such equilibria, the group which faced a less favorable judicial prejudice was also ex-post economically disadvantaged. In the dynamic version of Section 6.1, we constructed an example that possessed a similar sunspot equilibrium; however, the group with the less favorable prejudice was disadvantaged only in terms of their lifetime earnings, and not in terms of their per-period earnings when at work. Obviously, a more elaborate model can be conceived in which both aspects arise: The disadvantaged racial group has on average lower wages than the advantaged one, for the reasons mentioned in the text, but race has residual predictive power of criminal activity. This pattern exists very clearly in the data (see the references cited in the introduction), and we regard the lifetime income model as a promising theoretical framework in which to explore this issue further.

Finally, we have shown that the model can be extended to multiple offenses and more complex penalty schedules which are functions of the number of previous convictions. Examining the effects of escalating sanctions in the dynamic model is likely to produce interesting results. One rationale for escalating sanctions is that convicted offenders can be of two types: Those who are corrigible (and deserve a “second chance”) and those who are not (and from which the public should be protected). A person convicted of multiple offenses is more likely to belong to the second category; hence the increasing sentences for repeat offenders.12 It appears that in a dynamic model, where crime decisions are based on lifetime expected income, the number of prior convictions could serve a similar role as race in our model: If persons with prior convictions face an unfavorable prejudice in the legal system, then they may be more likely to commit crimes, which may make them appear to be incorrigible. Exploring this possibility is another question left for future research.

10About 55\% of Federal inmates in 2003 and 25\% of state level inmates were incarcerated for drug-related offenses. Source: Bureau of Justice Statistics Prisoners in 2004, NCJ 210677, October 2005.

11Blacks and Hispanics represented 24\% and 23\% of those convicted for drug-related offenses in 2003, compared to 14\% Whites. Source: Prisoners in 2005, NCJ 215092, November 2006.

12An alternative justification for escalating sanctions is given in Emons (2006).
Appendix

Proof of Lemma 1. To prove an equilibrium exists, we make a standard fixed point argument. Fix any \(w \) and define three maps,

\[
\begin{align*}
T_1 & : q \to p : [0, \infty) \to [0, 1], \\
T_2^w & : t \to q : [0, 1] \to [0, \infty), \\
T_3 & : p \to t : (0, 1) \to [0, 1]
\end{align*}
\]

by (2), (3) (given \(w \)), and (4), respectively; these are all given in Section 3.5. Note that \(T_1, T_2^w \) and \(T_3 \) are continuous on their respective domains. \(T_3 \) is well-defined through (4) on \((0, 1)\) only; however it can be extended continuously to \([0, 1]\) by setting \(T_3(0) = 1 \) and \(T_3(1) = 0 \). Further, as \(T_2^w \) is continuous on a compact domain, its image is bounded. We can hence restrict the range of \(T_2^w \), as well as the domain of \(T_1 \), to \([0, \hat{q}(w)]\) for sufficiently large \(\hat{q}(w) \). Now define a new map

\[
T^w : [0, 1] \times [0, \hat{q}(w)] \times [0, 1] \to [0, 1] \times [0, \hat{q}(w)] \times [0, 1]
\]

by

\[
T^w(p, q, t) = (T_1(q), T_2^w(t), T_3(p)).
\]

Since \(T^w \) maps a compact subset of \(\mathbb{R}^3 \) into itself, we can apply Brouwer’s fixed point theorem to show, for given \(w \), there exists \((p^*(w), q^*(w), t^*(w))\) such that \((p^*(w), q^*(w), t^*(w)) = T^w(p^*(w), q^*(w), t^*(w))\); thus it solves (2)–(4) simultaneously. Since such a fixed point can be constructed for each \(w \) independently, an equilibrium as defined above exists.

\[
\square
\]

Proof of Lemma 2. To prove uniqueness, let \(\lambda \leq \bar{\lambda} \) and suppose there are two equilibria, \((p^*, q^*, t^*) \neq (\tilde{p}^*, \tilde{q}^*, \tilde{t}^*)\). Thus there exists \(w \) such that \(q^*(w) \neq \tilde{q}^*(w) \) (otherwise \(p^*(w) = \tilde{p}^*(w) \forall w \) by (2), which implies \(t^*(w) = \tilde{t}^*(w) \forall w \), by (4), but then the equilibrium would be unique). So suppose, without loss of generality, that \(q^*(w) > \tilde{q}^*(w) \) for some \(w \).

Condition (2) then implies \(p^*(w) < \tilde{p}^*(w) \), and using (4) we have \(t^*(w) > \tilde{t}^*(w) \). If \(\lambda \leq \bar{\lambda} \) then using (5) we get \(q^*(w) \leq \tilde{q}^*(w) \), a contradiction. Hence the equilibrium is unique if \(\lambda \leq \bar{\lambda} \).

\[
\square
\]

Proof of Lemma 3. Let \(w > w' \) and suppose \(\Delta(w) > \Delta(w') \). If \(p(w) \geq p(w') \), then by condition (2), \(q(w) \leq q(w') \). However, by condition (4) and the fact that \(f/g \) increases, we have \(t(w) \leq t(w') \). Thus if \(\Delta(w) > \Delta(w') \) then (5)–(6) imply \(q(w) > q(w') \), which is a contradiction, and therefore \(p(w) < p(w') \). From (4) it follows then that \(t(w) > t(w') \), and from (2) it follows that \(q(w) > q(w') \). Exactly the opposite argument can be made when \(w > w' \) and \(\Delta(w) < \Delta(w') \). Finally, when \(\Delta \) is a constant then (3) is independent of \(w \) so that \(p^*, q^*, \) and \(t^* \) are constant, and hence constitute an unbiased equilibrium.

\[
\square
\]

Proof of Theorem 4. If \(u''(w) = 0 \), then \(\Delta'(w) = u'(w) - u'(w - \delta) = 0 \), and Lemma 3 (iii) implies (a). If \(\rho(w) = \gamma w \) and \(u(w) = a \ln w + b \), then \(\Delta'(w) = a/w - a/w = 0 \), and Lemma 3 (iii) implies (b) as well.

\[
\square
\]
Proof of Theorem 5. In case of imprisonment, $\Delta(w) = u(w) - u_0$, which is strictly increasing in w since $u'(w) > 0$. Applying Lemma 3 (ii) yields (a). In case of a fine, $\Delta(w) = u(w) - u(w - \delta)$, which is strictly decreasing in w if $u'(w) < 0 \ \forall w$. Applying Lemma 3 (i) yields (b).

Proof of Lemma 6. Suppose $R(w) > 1$ for all w, or equivalently
\[-\gamma w \frac{u''(\gamma w)}{u'(\gamma w)} > 1 \ \forall \gamma,
\]
and thus
\[\frac{\partial}{\partial \gamma} [\gamma u'(\gamma w)] = u'(\gamma w) + \gamma w u''(\gamma w) < 0 \ \forall \gamma. \quad (19)\]
Let $\mu(w) = w - \rho(w)$ be the income left to the individual after the fine $\rho(w)$. Since $\mu(w) < w$, (19) implies
\[\frac{\mu(w)}{w} u'(\mu(w)) = u'(w) - \int_{\mu(w)/w}^1 \frac{\partial}{\partial \gamma} [\gamma u'(\gamma w)] \, d\gamma > u'(w). \quad (20)\]
Suppose now that $\varepsilon(w) \leq 1 \ \forall w$: $w \rho'(w)/\rho(w) \leq 1$. Multiplying this inequality by $\rho(w)/w$ yields $\rho'(w) \leq \rho(w)/w$, and expressing the fine as $\rho(w) = w - \mu(w)$ we get $\mu'(w) \geq \mu(w)/w$. Then by (20)
\[\Delta'(w) = \frac{\partial}{\partial w} [u(w) - u(\mu(w))] = u'(w) - \mu'(w) u'(\mu(w)) \leq u'(w) - \rho(w)/w u'(\mu(w)) < 0.\]
By Lemma 3 (i), therefore, the equilibrium is biased against higher types. Analogous steps can be repeated for $R(w) < 1$ and $\varepsilon(w) \geq 1$, in which case $\Delta'(w) > 0$ and the equilibrium is biased against lower types by Lemma 3 (ii).

Proof of Lemma 7. If $S \neq \emptyset$, then an unbiased equilibrium exists, as argued in the text. We have to show that $S \neq \emptyset$. Note that v is a continuous function mapping $p \in [0,1]$ to $w \in [\underline{w}, \overline{w}]$. From the simple model with exogenous income differences we borrow the the map p^*, a correspondence which assigns to income levels $w \in [\underline{w}, \infty)$ prejudice levels $p \in [0,1]$. If $\lambda \leq \overline{\lambda}$, $p^*(w)$ is single-valued by Lemma 1. As Δ is continuous in w regardless of the punishment used, w enters the mapping T defined in the proof of Lemma 1 continuously, which implies that p^* is upper-hemicontinuous. But then p^* can equivalently be expressed as a continuous function from $[\underline{w}, \infty)$ to $[0,1]$. This implies that in $[0,1] \times [\underline{w}, \overline{w}]$, the graphs of these functions intersect at least once, so $S \neq \emptyset$.

Proof of Lemma 8. In the proof of Theorem 7 we already established that p^* is a continuous function from $[\underline{w}, \infty) \rightarrow [0,1]$. We first prove (a). Lemma 3 (i), p^* strictly increases for strictly decreasing Δ. Therefore, for each $v \in D$ there is exactly one $w \in [0,1]$ such that $v(p^*(w)) = w$. If Δ is constant, then by Lemma 3 (iii) p^* is constant. It will hence
become a vertical line in $p-w$ space, which is intersected by any decreasing, continuous v exactly once. Hence $|\mathcal{S}| = 1$ and a unique, unbiased equilibrium exists. To prove (b), note that by Lemma 3 (ii) p^* strictly decreases for strictly increasing Δ. Therefore, there exists a generic set of continuous, decreasing functions $v : [0, 1] \rightarrow [w, \overline{w}]$ for which the following holds: There exists $w_1, w_2 \in [w, \overline{w}]$, $w_1 \neq w_2$, such that $v(p^*(w_1)) = w_1$ and $v(p^*(w_2)) = w_2$. For all such v, $|\mathcal{S}| > 1$ and a biased equilibrium exists.

References

BECKER, G. (1957): The Economics of Discrimination, University of Chicago Press.

