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Updating Priest and Klein

Yoon-Ho Alex Lee and Daniel M. Klerman

Abstract

In their 1984 article, “The Selection of Disputes for Litigation,” Priest and Klein
famously hypothesized a “tendency toward 50 percent plaintiff victories” among
litigated cases. Nevertheless, many scholars doubt the validity of their conclu-
sions, because the model they relied upon does not meet modern standards of
rigor. This article updates the Priest-Klein model by considering three modifica-
tions. First, we raise a novel critique of the Priest-Klein model—that it is non-
Bayesian—and show that most of the results of Priest and Klein (1984) pertaining
to limits nevertheless remain valid under a modified model in which parties use
Bayes’ rule to refine their estimates of the plaintiff’s probability of prevailing.
Second, we show that even when an incentive-compatible mechanism is imposed,
many of the results remain valid for symmetric Nash equilibria. Finally, we show
how the Priest-Klein model can be modified to analyze asymmetric information,
show that most results are false under this modification, and compare the modified
Priest-Klein model to standard asymmetric information models.
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Abstract 
 

In their 1984 article, “The Selection of Disputes for Litigation,” Priest and Klein 
famously hypothesized a “tendency toward 50 percent plaintiff victories” among 
litigated cases. Nevertheless, many scholars doubt the validity of their conclusions, 
because the model they relied upon does not meet modern standards of rigor. This 
article updates the Priest-Klein model by considering three modifications. First, we 
raise a novel critique of the Priest-Klein model—that it is non-Bayesian—and show that 
most of the results of Priest and Klein (1984) pertaining to limits nevertheless remain 
valid under a modified model in which parties use Bayes’ rule to refine their estimates 
of the plaintiff’s probability of prevailing. Second, we show that even when an 
incentive-compatible mechanism is imposed, many of the results remain valid for 
symmetric Nash equilibria. Finally, we show how the Priest-Klein model can be 
modified to analyze asymmetric information, show that most results are false under this 
modification, and compare the modified Priest-Klein model to standard asymmetric 
information models. 
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1. Introduction 
 

Priest and Klein’s 1984 article, “The Selection of Disputes for Litigation,” famously 
hypothesized that there will be a “tendency toward 50 percent plaintiff victories” among litigated 
cases (p.20). Nevertheless, many scholars doubt the validity of their conclusions, because their 
model does not meet modern standards of rigor. This article updates the Priest-Klein model by 
considering three modifications. First, we alter the model so that parties use Bayes’ rule to refine 
their estimates of the plaintiff’s probability of prevailing, and show that most of Priest and 
Klein’s predictions are still true.  Second, we graft an incentive-compatible mechanism onto 
Priest and Klein’s model and show that many of the results remain valid for symmetric Nash 
equilibria. Finally, we show how the Priest-Klein model can be used to analyze asymmetric 
information, demonstrate that most results are false under this modification, and compare the 
modified Priest-Klein model to standard asymmetric information models. 

Priest and Klein’s article has been one of the most influential legal publications, and its 
influence is growing as empirical work on law has become more common. Compare Shapiro and 
Pearse (2012) to Shapiro (1996). Even with the introduction of asymmetric information models 
of settlement, Priest and Klein’s article continues to be cited by sophisticated empiricists and in 
respected peer-reviewed journals. See Hubbard (2013); Gelbach (2012); Atkinson (2009); 
Bernardo, Talley and Welch (2000); Waldfogel (1995); Siegelman and Donohue (1995).  

It is helpful to distinguish six hypotheses plausibly attributable to the Priest and Klein 
(1984): 

 
THE TRIAL SELECTION HYPOTHESIS. “[D]isputes selected for litigation (as opposed to 
settlement) will constitute neither a random nor a representative sample of the set of all 
disputes” (p.4). This proposition is probably the most important contribution of their 
article.  
 
THE FIFTY-PERCENT LIMIT HYPOTHESIS. “[A]s the parties’ error diminishes” there will be 
a “convergence towards 50 percent plaintiff victories” (pp.18). This hypothesis is often 
called the Priest-Klein hypothesis.  
 
THE ASYMMETRIC STAKES HYPOTHESIS. If the defendant would lose more from an 
adverse judgment than the plaintiff would gain, then the plaintiff will win less than fifty 
percent of the litigated cases. Conversely, if the plaintiff has more to gain, then the 
plaintiff will win more than fifty-percent (see pp. 24-26). This hypothesis is most 
plausibly, like the Fifty-Percent Limit Hypothesis, a statement about the limit percentage 
of plaintiff victories as the parties become increasingly accurate in predicting trial 
outcomes.  
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THE IRRELEVANCE OF THE DISPUTE DISTRIBUTION HYPOTHESIS. The plaintiff trial win rate 
will be “unrelated … to the shape of the distribution of disputes” (pp. 19 and 22). Like 
the two previous hypothesis, this hypothesis is about the limit as the parties become 
increasingly accurate in predicting trial outcomes. This hypothesis is closely related to 
the Fifty-Percent Limit Hypothesis, but more fundamental. It is also more general, 
because it also applies when the stakes are unequal.  
 
THE NO INFERENCES HYPOTHESIS. Because selection effects are so strong, no inferences 
can be made about the law or legal decisionmakers from the plaintiff trial win rate. 
Rather, “the proportion of observed plaintiff victories will tend to remain constant over 
time regardless of changes in the underlying standards applied.” (p. 31). Because this 
hypothesis was examined in great detail in Klerman and Lee (2014), it will not be 
analyzed further here. 
 
THE FIFTY-PERCENT BIAS HYPOTHESIS. Regardless of the legal standard, the plaintiff trial 
win rate will exhibit “a strong bias toward . . . fifty percent” as compared to the 
percentage of cases plaintiff would have won if all cases went to trial (pp. 5 and 23). That 
is, the plaintiff trial win rate will be closer to fifty percent than the plaintiff win rate that 
would be observed if all cases went to trial.  
 

 Klerman and Lee (2014) shows that the No Inferences Hypothesis is false under both 
Priest and Klein’s original model and more recent asymmetric information models. Lee and 
Klerman (2015) analyzes the mathematical validity of the other hypotheses under a formalization 
of Priest and Klein’s original model and provides the first rigorous proofs that the other 
hypotheses, including the Fifty-Percent Limit Hypothesis, are largely true. This article moves 
beyond the original model and considers three extensions. The goal of these extensions is to 
retain as much as possible of Priest and Klein’s original set up, while correcting problems with 
the original model and bringing it more in line with modern modeling standards.  

First, we raise a novel critique of Priest and Klein’s original model—that it is non-
Bayesian. The original model assumes that parties estimate the plaintiff’s probability of 
prevailing without taking into account information about the underlying distribution of all 
disputes. More precisely, Priest and Klein assume that the defendant’s degree of fault can be 
represented by a real number, ܻᇱ, and that the plaintiff and defendant estimate the defendant’s 
fault with error. So the plaintiff’s point estimate is ܻ = ܻᇱ + ߳, where ߳ has mean zero and 

standard deviation ߪ. Similarly, defendant’s point estimate is ௗܻ = ܻᇱ + ߳ௗ, where ߳ௗ also has 
mean zero and standard deviation ߪ. Parties then estimate the plaintiff’s probability of prevailing 
by calculating the likelihood that the true ܻᇱ is greater than ܻ∗ under the assumption that the true ܻᇱ is distributed with mean ܻ or ௗܻ and standard deviation ߪ. This means that the parties are not 

using Bayes’ rule and the information they may have about the distribution of ܻᇱ to estimate the 
likelihood of plaintiff victory. Later scholars, including Waldfogel (1995), have adopted this 
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problematic aspect of Priest and Klein’s original set-up and effectively assumed that the parties 
are naïve and non-Bayesian. We explore a modification to the original model under which the 
parties are sophisticated Bayesians who take into account the underlying distribution of disputes. 
We find that most of the Priest-Klein hypotheses remain valid under this modified model.  

Second, Priest and Klein’s model has been criticized for lacking an incentive-compatible 
mechanism. This is, Priest and Klein assume that as long as the plaintiff’s subjective expected 
net trial recovery is greater than the defendant’s subjective expected net loss, the parties will 
settle. Nevertheless, much has been written about ex post inefficiency arising in strategic 
bargaining. See Myerson and Satterthwaite (1985). We address the possibility of ex post 
bargaining inefficiency by coupling Priest and Klein’s model with an incentive-compatible 
mechanism. Our approach is similar to Friedman and Wittman (2007) in that we employ the 
Chatterjee-Samuelson mechanism, but different in that our model retains Priest and Klein’s 
original set-up. By remaining faithful to Priest and Klein’s model, we can identify the extent to 
which their hypotheses are robust to an incentive-compatible mechanism. Under this model, we 
show that there will always be at least one symmetric equilibrium in the limit that will yield a 
fifty-percent trial win rate for the plaintiff, even when stakes are slightly asymmetric. Moreover, 
this and other results continue to hold even under the Bayesian modification.  

Third, we show how Priest and Klein’s model can be relatively easily modified to 
analyze asymmetric information.  In fact, the modified model is, in some ways, more flexible 
than standard asymmetric information models, Bebchuck (1984) and Reinganum & Wilde (1986).  
Whereas canonical asymmetric information models assume that either the plaintiff or defendant 
are perfectly informed, the modified Priest-Klein model can be used to analyze situations where 
the difference in information is a matter of degree and neither side is perfectly informed.  Under 
the asymmetric-information version of the Priest-Klein model, only the Trial Selection and 
Irrelevance of Dispute Resolution Hypotheses are true.  We also compare the modified Priest-
Klein model to the canonical asymmetric information models in both their model structure and 
results.  

Table 1 summarizes the results:  
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Table 1. Main Results 
 

 Original Priest-
Klein Model 

Priest-Klein 
Model with 
Bayesian 
Correction 

Priest-Klein 
Model with 
Incentive-
Compatible 
Mechanism 

Priest-Klein 
Model with 
Asymmetric 
Information 

Trial Selection 
Hypothesis 

True True True True 

Fifty-Percent 
Limit Hypothesis 

True True True False 

Asymmetric 
Stakes 
Hypothesis 

True True False False 

Irrelevance of 
Dispute 
Distribution 
Hypothesis 

True True True True 

Fifty-Percent 
Bias Hypothesis 

True under Some 
Conditions 

True under Some 
Conditions 

True under Some 
Conditions 

False 

Notes. “True” means true under a wide array of assumptions. “True under Some Conditions” 
means true under a narrow set of assumptions. “False” means not true with any meaningful 
generality. Results for the Priest-Klein Model with an Incentive-Compatible Bargaining 
Mechanism are for symmetric limit equilibria only. For asymmetric information models, the 
Fifty-Percent Limit Hypothesis means that the plaintiff trial win rate is Fifty-Percent when the 
stakes are symmetric. See Section 5 for more on the meaning of the middle three hypotheses 
under the asymmetric information models. 
 

The No Inferences Hypothesis is omitted from the table, because it is the subject of 
Klerman and Lee (2014). Results in the first column (“Original Priest-Klein Model”) are proved 
in Lee and Klerman (2015). 

The rest of the article proceeds as follows. Section 2 presents a formalized version of 
Priest and Klein’s original model. Section 3 analyzes the selection implications of a modified 
model under which parties use Bayes’ rule to calculate the plaintiff’s probability of prevailing. 
Section 4 explores the implications of grafting the Chatterjee-Samuelson mechanism onto Priest 
and Klein’s original model. Section 5 briefly modifies the Priest-Klein model to take into 
account asymmetric information and compares the resulting model and results to canonical 
asymmetric information models. The Appendix contains technical proofs and additional results.  

 
2. Formalization of Priest and Klein’s Original Model 
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This section assumes familiarity with Priest and Klein (1984) and follows Waldfogel’s 
(1995) formalization. Although there have been other attempts to formalize Priest and Klein’s 
model (see Wittman (1985) and Hylton and Lin (2012)), Waldfogel offers the formalization that 
is most faithful to the model in Priest and Klein’s original article. See Hylton and Lin (2012), n.5. 
Lee and Klerman (2015) used this formalization to prove most of the Priest-Klein hypotheses. 
We begin by first presenting the formalization in the most general manner possible and state the 
results under the original model in this section.   We then introduce the extensions we consider in 
Sections 3 and 4.   

The merits of a case are represented by a real number ܻᇱ, and the decision standard is 
denoted ܻ∗, where the defendant prevails if ܻ′ ≤ ܻ∗, and the plaintiff prevails if ܻᇱ > ܻ∗. For 
example, in a negligence case, ܻᇱ might be the efficient level of precaution expenditures minus 
defendant’s actual precaution, in which case ܻ∗ = 0. Priest and Klein, for simulation purposes, 
assume ܻᇱ is distributed according to a standard normal distribution. We do not impose that 
restriction. Instead, we assume only that ܻᇱ is distributed according to a probability density 
function, ݃(ܻᇱ), that is bounded above everywhere and locally continuous and nonzero at ܻ∗. 
Note that if all disputes were litigated, the plaintiff win rate would be  ݃(ܻᇱ)ܻ݀′ஶ∗ .	If ܩ(ܻᇱ) is 

the corresponding cumulative distribution, then the plaintiff win rate can be rewritten as 1  .(∗ܻ)ܩ−
If a case goes to trial, the court observes the true ܻ′ and gives judgment to the plaintiff if 

and if ܻᇱ > ܻ∗. The plaintiff and the defendant themselves make unbiased estimates of ܻ′,  ܻ = ܻᇱ + ߳ and ௗܻ = ܻᇱ + ߳ௗ, respectively, where ߳ and ߳ௗ have mean zero, standard 

deviations ߪ	and ߪௗ, respectively, and are distributed according to the joint probability 

distribution	 ఙ݂,ఙ൫߳, ߳ௗ൯. Priest and Klein assume that ߳ and ߳ௗ are independent and that ఙ݂,ఙ൫߳, ߳ௗ൯ is bivariate normal with ߪ = ,In other words, they assume ఙ݂,ఙ൫߳	ௗ.ߪ ߳ௗ൯ =ఙ݂൫߳൯ ఙ݂(߳ௗ), where ఙ݂(∙) is the normal distribution with standard deviation ߪ. Lee and 

Klerman (2015) have shown that these assumptions can be relaxed.   
We assume instead that ߳ and ߳ௗ are not necessarily independent, but are distributed 

with mean zero and standard deviations ߪ	and ߪௗ, respectively, according to a joint probability 

density function ఙ݂,ఙ൫߳, ߳ௗ൯ that may not be normal, but which has the following properties.  

First, ఙ݂,ఙ൫߳, ߳ௗ൯ has full support over the entire ࡾଶ.  Second, ఙ݂,ఙ൫߳, ߳ௗ൯ satisfies the 

following condition: ଵ݂,ଵ(ݔ, (ݕ = ௬ߪ௫ߪ ఙ݂ೣ,ఙ൫ߪ௫ݔ,  ൯.  Third, the corresponding univariateݕ௬ߪ

marginal distributions for ߳ and ߳ௗ are ݂,ఙ൫߳൯ and ௗ݂,ఙ(߳ௗ) such that ݂,ଵ(ݔ) = ௫ߪ ݂,ఙೣ(ߪ௫ݔ) 
and ௗ݂,ଵ(ݕ) = ௬ߪ ௬݂,ఙ൫ߪ௬ݕ൯.  Let ܨ[∙] and ܨௗ[∙] be the corresponding cumulative distributions 

when ߪ = ௗߪ = 1. 

The second assumption, in particular, indicates that ఙ݂,ఙ൫߳, ߳ௗ൯ belongs to a family of 

mean-zero probability density functions that vary parametrically with ߪ and ߪௗ and can be 

standardized with proper scaling.  The reason for making this assumption is that some of the 
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hypotheses require taking the limit as ߪ and ߪௗ approach zero.  Therefore, there needs to be a 

well-defined family of distributions as the standard deviation parameter varies.  A bivariate 
normal distribution with mean zero certainly satisfies all these conditions, but a host of other 
distributions also satisfy these conditions.1   

In Section 5, where we explore asymmetric information in Section 5, we allow ߪ and ߪௗ 

to be different.  For example, ߪ may be greater than ߪௗ if the defendant is systematically 

superior in estimating the true merit of the case than the plaintiff.  Therefore, we let ߪ ߚ/ௗߪ= = ߚ for a fixed ߪ > 0. For sections 3 and 4, we will assume that the parties are, on average, 
equally well informed (ߚ = 1).   

In order to estimate the probability with which the plaintiff will prevail, both the plaintiff 
and the defendant need to take into account the fact that their estimates of case merit, ܻᇱ + ߳ 

and ܻᇱ + ߳ௗ, are not wholly accurate. Therefore, they must estimate both the mean and standard 
deviation of their estimates of ܻᇱ.  Priest and Klein (1984) assume that plaintiff estimates the 
mean of sampling distribution of ܻᇱ to be ܻᇱ + ߳ and the standard deviation to be ߪ.	 
Waldfogel (1995) notes that under this set-up the plaintiff’s subjective estimate of the probability 

it will prevail, ܲ = ܲ൫ܻᇱ ≥ ܻ∗หܻᇱ + ߳൯, will simply be ܲ = ܨ ቈ′ାఢି∗ఙ . Similarly, the 

defendant estimates the mean of ܻᇱ to be ܻᇱ + ߳ௗ, and the standard deviation to be ߪௗ. So the 

defendant estimates the probability that the plaintiff prevails to be ௗܲ = ௗܨ ቈ′ାఢି∗ఙ .	We 

reconsider this assumption in Section 3, where we modify the model and assume the parties take 
the underlying distribution of disputes into consideration in calculating their subjective beliefs.   

Priest and Klein assume that the parties go to trial2 if ܲܬ − ܥ + ܵ > ௗܲܬ + ௗܥ − ܵௗ, 

where ܬ > 0 is the damages that the defendant pays the plaintiff if the case is litigated and the 
plaintiff prevails, ܥ and ܥௗ are litigation costs for the plaintiff and the defendant, respectively, 

and ܵ and ܵௗ are settlement costs for the plaintiff and the defendant, respectively. This 

condition for litigation makes sense, because settlement can only happen if both parties perceive 
the payoffs to settlement to be higher than the payoffs to litigation. The litigation condition can 
be rewritten as ( ܲ − ௗܲ)ܬ > ܥ − ܵ, where ܥ = ܥ + ܵ ௗ andܥ = ܵ + ܵௗ. ( ܲ − ௗܲ)ܬ > ܥ − ܵ 

                                                            
1 A partial list of distributions (with full support over ࡾଶ) that satisfy this condition include bivariate 

distributions composed of generalized normal distributions, Laplace distributions, and logistic distributions. Given 
any univariate probability density function ݂(ݔ) with mean zero and standard deviation 1, one can always construct 

such a family of bivariate density function by setting ఙ݂,ఙ൫߳, ߳ௗ൯ = ൬ച൰൬ച൰ఙఙ .   
2 Priest and Klein and much of the later literature assume that “litigate” and “go to trial” are synonymous, 

because they assume that all cases either settle or go to trial. More recent work explores the fact that many cases are 
resolved by motions to dismiss or summary judgment. Gelbach (2012); Hubbard (2013). Cases resolved by such 
motions are litigated, but did not go to trial. This article, however, retains the simplifying assumption that all 
litigated cases go to trial. The term “disputes” or “all disputes” means both cases that settle and cases that are 
litigated. 
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is known as the Landes-Posner-Gould condition for litigation, after the three scholars who 

formulated it. Priest and Klein simulate their results with 
ିௌ = 1/3. We assume 0 < ܥ) ܬ/(ܵ− ≤ 1. Priest and Klein assume that the plaintiff always has a credible threat to go to trial and 

thus can litigate or settle even when ܲܬ <  . We retain that assumption, even though it isܥ

unrealistic. Relaxing it would complicate the math, but have little effect on the main conclusions.  
Priest and Klein are silent about how the parties bargain to arrive at a settlement. 

Technically, the Landes-Posner-Gould condition is merely a sufficient condition for litigation, 
not a necessary one. Litigation might happen even if the condition is violated, because parties 
might not be able to agree on the settlement amount, even if there is a range of settlement 
amounts that would be in their perceived mutual interest. As modern mechanism design research 
has shown, bargaining is frequently inefficient. See Myerson and Satterthwaite (1983); but see 
McAfee and Reny (1992). Nevertheless, Priest and Klein (1984) and others using the divergent 
expectations model have assumed that the Landes-Posner-Gould condition is necessary as well 
as sufficient for litigation. In this section and in Section 3, we proceed with this assumption, but 
we relax it in Section 4.  

Priest and Klein allow for the possibility that parties may have asymmetric stakes and 
suggest there will be a deviation from fifty-percent in such cases. For example, the defendant 
may be more concerned about its reputation or an adverse precedent, so it may lose more from an 
adverse judgment than the plaintiff gains from prevailing. As Priest and Klein point out, 
asymmetric stakes can be formalized by assuming that the plaintiff would win ܬߙ if it prevailed 
and the defendant would lose J if the plaintiff won. If ߙ is greater than 1, then the plaintiff faces 
a greater stake in the litigation than the defendant, and vice versa. Taking into account the 
possibility of asymmetric stakes, the trial condition becomes ߙ ܲ − ௗܲ > ܥ) −   .ܬ/(ܵ

Let ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗) denote the probability that a dispute ܻᇱ goes to trial when the 

decision standard is ܻ∗ and where the parties predict case merit with errors ߳ and ߳ௗ that are 

distributed with mean zero and standard deviations ߪ and ߪௗ. We shall call this the “litigation 

probability function.”  When ߪ = ௗߪ = ;we will simply denote this probability as ఈܲ,ఙ(ܻᇱ ,ߪ ܻ∗). ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗) can be written as the probability that  ܨߙ ቈܻ′ + ߳ − ߪ∗ܻ  − ௗܨ ቈܻᇱ + ߳ௗ − ௗߪ∗ܻ  > ܥ − ܬܵ . 
In other words, ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗) = ∬ ఙ݂,ఙ൫߳, ߳ௗ൯݀߳݀߳ௗோഀ,,(ᇲ;∗) , where ܴఈ,ఙ,ఙ(ܻᇱ; ܻ∗) = ൜൫߳, ߳ௗ൯ ∈ ܴଶฬܨߙ ᇱାఢି∗ఙ ൨ − ௗܨ ቂᇲାఢି∗ఙ ቃ > ିௌ ൠ. Therefore, 

ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗) can be expressed as a double integral over a region of integration that is 

implicitly defined by the inequality.  

http://law.bepress.com/usclwps-lss/167
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The fraction of cases litigated is  ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗)݃(ܻᇱ)ܻ݀′ஶିஶ . This value approaches 

zero as ߪ and ߪ approach zero. The plaintiff trial win rate is thus 

ఈܹ,ఙ,ఙ(ܻ∗) =  ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗)݃(ܻᇱ)ܻ݀′ஶ∗ ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗)݃(ܻᇱ)ܻ݀′ஶିஶ . 
When ߪ = ௗߪ =  (∗ܻ)we denote the plaintiff trial win rate as simply ఈܹ,ఙ(ܻ∗). Since ఈܹ,ఙ,ఙ ,ߪ
is mathematically different from  ݃(ܻᇱ)ܻ݀′ஶ∗ , the plaintiff trial win rate if all disputes  were 

litigated, we can readily see that the set of litigated cases is not simply a random set of all 
disputes.  The Trial Selection Hypothesis is therefore clearly correct. 

At this point, we introduce a useful change of variables.  Let ߪ = ߚ/ௗߪ = ߚ for a fixed ߪ > 0.  Therefore, as ߪ approaches zero, ߪௗ will necessarily approach zero as well. For a given ߪ > 0, let ݑ = ᇲାఢି∗ఙ = ᇲାఢି∗ఙ , ݒ = ᇲାఢି∗ఙ = ᇲାఢି∗ఉఙ , ݖ = ᇲି∗ఙ .  Then we have  

ఙ݂,ఙ൫߳, ߳ௗ൯݀߳݀߳ௗ = ఙ݂,ఙ ൭ߪ(ݑ − ,(ݖ ௗߪ ൬ݒ − ݒ݀ݑௗ݀ߪߪ൰൱ߚݖ = ଵ݂,ఉ ൬ݑ − ,ݖ ݒ −  .ݒ݀ݑ൰݀ߚݖ
Meanwhile, ܴఈ,ఙ,ఙ(ܻᇱ; ܻ∗) = ቄ(ݑ, [ݑ]ܨߙቚ(ݒ − [ݒ]ௗܨ > ିௌ ቅ = ܴఈ(ݑ, ߪ Therefore, for each  .(ݒ > 0, 

ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗) = ඵ ଵ݂,ఉ ൬ݑ − ,ݖ ݒ − ோഀ(௨,௩)ݒ݀ݑ൰݀ߚݖ  

This normalization of the variables is useful.  Prior to normalization, ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗), as a 

function of ܻᇱ, was a double integral of a fixed bivariate distribution over a region of integration 
in the ߳߳ௗ–plane that depended on three parameters: ܻᇱ, ߪ, and ߪௗ.  After the change of 

variables, ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗) = ఈܲ,ఙ,ఉఙ(ݖߪ + ܻ∗; ܻ∗), as a function of ݖ, is a double integral of a 

bivariate distribution over a region of integration in the ݒݑ–plane that depends on only one 
parameter: ݖ.  Indeed, the key insight from Lee and Klerman (2015) was that, when ߙ = 1, the 
region of integration, ܴఈ(ݑ, ݒ and is symmetric around the line ,ߪ is invariant under ,(ݒ =  3.ݑ−
This fact, together with Chebyshev’s inequality, allowed for a construction of a Lebesgue-
integrable dominating function.  This allowed us to take the limits under the integral using 
Lebesgue’s Dominated Convergence Theorem.  In addition, the symmetry of ܴఈ(ݑ,  around (ݒ
the line ݒ =  led to the result that the litigation probability function, too, must be symmetric ݑ−
around ܻ∗ when ߙ = 1.   

Figures 1a and 1b depict examples of litigation probability functions, ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗) for 

large and small ߪ where ߙ = ߪ ,1 = ௗߪ = ߚ) ߪ = 1), ܻ∗ = 1, and ܨ is the cumulative normal 

distribution. As these figures show, when ߙ = 1 the probability of litigation is single-peaked and 

                                                            
3 The region of integration labeled as ܴଵ(ݑ,  .in Figure 3 illustrates this point (ݒ
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symmetric around ܻ∗. Therefore, disputes close to ܻ∗ are the most likely to be litigated. In 
addition, as ߪ becomes smaller, the probability of litigation becomes highly concentrated near ܻ∗.  
 

 
   Figure 1a. ଵܲ,ఙ(ܻᇱ; 1) for ߪ = 1.                    Figure 1b. ଵܲ,ఙ(ܻᇱ; 1) for ߪ = 0.1. 

 
The following is a list of some of the major results under the original model from Lee and 

Klerman (2015). These results provide a point of comparison for the modified models explored 
in the rest of this article.  

 

 IRRELEVANCE OF THE DISPUTE DISTRIBUTION HYPOTHESIS.  Suppose ݃(ܻᇱ) is bounded 
above everywhere and locally continuous and nonzero at ܻ∗, and  ߳ and ߳ௗ are 

distributed with mean zero according to ఙ݂,ఙ൫߳, ߳ௗ൯ such that ଵ݂,ଵ(ݔ, (ݕ ௬ߪ௫ߪ= ఙ݂ೣ,ఙ൫ߪ௫ݔ, ߙ ൯ with full support over ܴଶ. Then forݕ௬ߪ > ିௌ , the limit of the 

plaintiff trial win rate as ߪ and ߪௗ approach 0 reduces to an expression independent of ݃(ܻᇱ). For ߙ ≤ ିௌ , all cases settle, so the plaintiff trial win rate is undefined. 

 

 FIFTY-PERCENT LIMIT HYPOTHESIS.   Suppose ݃(ܻᇱ) is bounded above everywhere and 
locally continuous and nonzero at ܻ∗, the stakes are equal (i.e.,	ߙ = 1), and the parties’ 
prediction errors, ߳ and ߳ௗ, are distributed according to the same probability density 

function (i.e., ݂,ఙ = ௗ݂,ఙ) with a common standard deviation (i.e.,	ߚ = 1) and according 

to a joint probability density function that is symmetric around 0 and symmetric with 
respect to each other, then the limit value of the plaintiff trial win rate is fifty percent.  
 

 ASYMMETRIC STAKES HYPOTHESIS. Under the assumptions set out for the Fifty-Percent 

Limit Hypothesis, except the stakes are unequal, if ߙ > ିௌ , the limit value of plaintiff 

trial win rate will be greater than fifty percent for ߙ > 1 and less than fifty percent for ߙ < 1. 
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 FIFTY-PERCENT BIAS HYPOTHESIS.  Under the assumptions set out for the Fifty-Percent 
Limit Hypothesis, the Fifty-Percent Bias Hypothesis is true for sufficiently small values of ߪ. That is, the plaintiff trial win rate will be closer to fifty percent than the plaintiff win 

rate among all disputes. In other words, ห ଵܹ,ఙ(ܻ∗) − 1/2ห ≤ ห ݃(ܻᇱ)ܻ݀′ஶ∗ − 1/2ห for 

all	ܻ∗ ∈ ܴ.  For large values of ߪ, the Fifty-Percent Bias Hypothesis will be true if ݃(ܻᇱ) 
is symmetric and logarithmically concave. 

 
We are now ready to consider the extensions. 
  

3. Priest-Klein Model with Bayesian Correction 
 
As mentioned above, Priest and Klein’s original model assumes (implicitly) that the 

parties estimate the plaintiff’s probability of prevailing without using Bayes’ rule or information 
about the underlying distribution of all disputes. Consequently, Priest and Klein’s model 

assumed that ܲ = ܲ൫ܻᇱ ≥ ܻ∗หܻᇱ + ߳൯ = ܨ ᇱାఢି∗ఙ ൨  and ௗܲ = ܲ(ܻᇱ ≥ ܻ∗|ܻᇱ + ߳ௗ) ௗܨ= ቂᇱାఢି∗ఙ ቃ. This means that the parties are not taking into consideration the actual distribution 

of ܻᇱ in estimating the likelihood of the plaintiff’s victory. It is as if the parties were assuming—
for the purpose of making their estimates—that ݃(ܻᇱ) is flat and has full support, which is not 
possible.4  It also means that the parties are assuming that ߪand ߪௗ, the standard deviations of ߳ and ߳ௗ, are also the standard deviations of the parties’ estimates ܻᇱ.  

These are problematic assumptions. Consider a simple discrete case where ܻᇱ can take 
only integer values between 1 and 10, with each integer value equally likely. Suppose each party 
observes ܻᇱ within an error that is zero, +1, or -1, each with probability one third. In this case, if 
a party observes 5, he would be correct to presume that the true ܻᇱ will be 4, 5, or 6, each with 
probability one third. As a result, it would be rational for the party to assume that the mean of the 
sampling distribution of ܻᇱ is 5 and that the same error distribution (0, +1, -1) that generated the 
party’s observations will also describe the sampling distribution. Suppose, on the other hand, that 
it is known that ܻᇱ never takes the values 5 or 6. That is, ܻᇱ ∈ {1,2,3,4,7,8,9,10}, with each value 
equally likely. As before, assume that each party observes ܻᇱ with an error that is zero, +1, or -1, 
each with probability one third. In this situation, if a party observes 5 and knows the underlying 
distribution of ܻᇱ, he would know with certainty that the true ܻᇱ is exactly 4. Given that 5 and 6 
are never observed, it would be irrational for the party to assume that the mean of the sampling 
distribution was his observation, 5, or that the true value of ܻᇱwas distributed around 5 with 

                                                            
4 One could approximate a completely flat distribution by assuming that the distribution of disputes had 

very large standard deviation. Nevertheless, this approach is implausible, because it implies that close cases are 
extremely rare and that the outcome of nearly all cases can be predicted with close to absolute certainty. That would 
imply settlement rates even higher than observed today. 
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errors zero, +1, or -1 with equal probability. This example suggests that a rational party would 
use information about the distribution of disputes both in calculating the mean of its estimate of ܻᇱ and in calculating the standard deviation of ܻᇱ. Although litigating parties may lack precise 
information about the distribution of disputes, experienced lawyers probably have a rough sense 
of the distribution of disputes. 

 The most plausible way of modifying the model to incorporate party knowledge of the 
distribution of disputes is to interpret ܻ and ௗܻ not as the parties’ own estimates of ܻᇱ, the 

defendant’s degree of fault, but as informative signals the parties receive about ܻᇱ. The parties 
then use the signals to make their estimates of ܻᇱ and its standard deviation. This modification 
brings the model closer to the literature on settlement under two-sided asymmetric information. 
Schweizer (1989); Sobel (1989); Daughety & Reinganum (1994); Friedman & Wittman (2006).  

Under the modified model the parties’ estimates would not be ܲ = ܲ൫ܻᇱ ≥ ܻ∗หܻᇱ + ߳൯ ܨ= ᇲାఢି∗ఙ ൨ and ௗܲ = ܲ(ܻᇱ ≥ ܻ∗|ܻᇱ + ߳ௗ) = ௗܨ ቂᇲାఢି∗ఙ ቃ, as before. Instead, they would be 

 ܲ = ܲ൫ܻᇱ ≥ ܻ∗หܻᇱ + ߳, ݃(ܻᇱ)൯ =  ,൫ᇲାఢି∗ିௐᇲ൯(∗ାௐᇲ)ௗௐᇲಮబ ,൫ᇲାఢି∗ିௐᇲ൯(∗ାௐᇲ)ௗௐᇲಮషಮ , and  

ௗܲ = ܲ(ܻᇱ ≥ ܻ∗|ܻᇱ + ߳ௗ, ݃(ܻᇱ)) =  ,൫ᇲାఢି∗ିௐᇲ൯(∗ାௐᇲ)ௗௐᇲಮబ ,൫ᇲାఢି∗ିௐᇲ൯(∗ାௐᇲ)ௗௐᇲಮషಮ .  

Likewise, the trial condition would be determined by the following inequality: ߙ ൭ ݂,ఙ൫ܻᇱ + ߳ − ܻ∗ −ܹᇱ൯݃(ܻ∗ +ܹᇱ)ܹ݀ᇱஶ ݂,ఙ൫ܻᇱ + ߳ − ܻ∗ −ܹᇱ൯݃(ܻ∗ +ܹᇱ)ܹ݀ᇱஶିஶ ൱
− ൭ ௗ݂,ఙ൫ܻᇱ + ߳ − ܻ∗ −ܹᇱ൯݃(ܻ∗ +ܹᇱ)ܹ݀ᇱஶ ௗ݂,ఙ൫ܻᇱ + ߳ − ܻ∗ −ܹᇱ൯݃(ܻ∗ +ܹᇱ)ܹ݀ᇱஶିஶ ൱ > ܥ − ܬܵ  

 
Note that in this case, even after effecting a same change of variables as in Section 2, the region 
of integration will continue to depend on ߪ and ܻ∗ (see Appendix).  Despite the added layer of 
complexity, it turns out that this modification does not make a significant difference when it 
comes to results pertaining to limits.  For this reason, all the limit hypotheses remain valid under 
the Priest-Klein model with Bayesian correction.  Intuitively, this makes sense, because as a 
party’s information (signal) becomes more accurate (as ߪ approaches zero), it will rely more 
heavily on its signal about this particular dispute and less on information about disputes more 
generally.  

 
PROPOSITION 1: PRIEST-KLEIN HYPOTHESES UNDER THE BAYESIAN MODEL. Suppose the 

Priest-Klein model is modified to include the Bayesian correction, the Irrelevance of Dispute 
Distribution, Fifty-Percent Limit and Asymmetric Stakes Hypotheses are valid as stated in 
Section 2, and the Fifty-Percent Bias Hypothesis is valid for sufficiently small ߪ.  
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Although this modified approach corrects a weakness in Priest and Klein’s original model, 
it has some implications that may be unappealing. Under the modified model, the parties’ 
estimates are no longer unbiased. For example, suppose the distribution of disputes is standard 
normal and true case merit is ܻᇱ = 1.5. Although the parties receive signals that average 1.5 
(because the signals are unbiased), they will take into account the fact that the standard normal is 
centered at zero, so their estimates will, on average, be somewhat less than 1.5. This assumption 
differs from nearly all the literature on suit and settlement, including Priest and Klein’s model. In 
addition, it seems unrealistic to think that experienced litigators would be unable to formulate 
unbiased estimates of the plaintiff’s probability of prevailing. Furthermore, it seems odd that 
both parties’ estimates would deviate from the true value in the same direction.  

A consequence of these biased estimates is that the most heavily litigated disputes will 
not be distributed around the decision standard, ܻ∗. For example, in the case of normal 
distributions centered at 0, given a decision standard ܻ∗, the disputes most heavily litigated will 
be centered around (1 +  ଶ)ܻ∗ rather than ܻ∗. This contradicts an aspect of Priest and Klein’sߪ
model that many readers found intuitive and realistic—that disputes lying closest to the decision 
standard would be most heavily litigated. The underlying logic was that the uncertainty as to who 
would win would be greatest for such disputes and that differences in the parties’ estimates of 
their probability of prevailing would also be largest there. Under the modified approach, 
however, litigated disputes will tend to be farther away from the mean than the decision standard. 
For large ߪ values, the center of litigated disputes will in fact be far from the decision standard. 
This means that, when the legal standard favors the plaintiff, ܻ∗ < 0, litigated cases may more 
often be those the defendant will win. Conversely, when the legal standard favors the defendant, ܻ∗ > 0, litigated cases may more often be those the plaintiff will win. Finally, for large ߪ values, 
there are still other results, that seem implausible. Simulation results using normal distributions 
reveal that, for sufficiently large (but plausible) ߪ values, the plaintiff’s win rate will be 
monotonically increasing as the decision standard increases (and thus becomes more defendant-
friendly). This is in tension Klerman and Lee (2014), which found that, under plausible 
conditions and parameter assumptions, inferences regarding the legal standard of liability are 
generally possible under Priest and Klein’s original model as well as under screening and 
signaling models.  
 

4. Priest-Klein Model with an Incentive-Compatible Mechanism 
 
Priest and Klein’s model has been criticized because it does not include an incentive-

compatible bargaining mechanism. Instead, Priest and Klein assume that whenever settlement 
would be in the parties’ perceived mutual interest, they will successfully bargain to a settlement. 
That is, they assume that the Landes-Posner-Gould condition, ( ܲ − ௗܲ)ܬ > ܥ − ܵ, is a necessary 

as well as sufficient condition for litigation. In doing so, they follow the lead of other early 
analyses of settlement, which, although they generally recognized that the Landes-Posner-Gould 
condition was only a sufficient condition, often assumed for the purposes of analysis that it was 
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both necessary and sufficient. (Landes 1971, p. 66; Posner 1973, pp. 417-18; Gould 1973, p. 284)   
Put another way, like many other pioneers of law and economics, Priest and Klein implicitly 
assume the existence of an ex post efficient5 bargaining mechanism through which the parties 
would always be able to settle when doing so was in their perceived mutual best interest.  

Nevertheless, modern research in bargaining and mechanism design has reached the 
pessimistic conclusion that, when there is asymmetric information, such an efficient mechanism 
may not exist. Myerson and Satterthwaite (1983). On the other hand, the Myerson and 
Satterthwaite theorem does not apply to the Priest-Klein model, because the parties’ estimates 
are not independent and type spaces are infinite. McAfee and Reny (1992) suggest that in such 
cases an incentive-compatible ex post efficient trading may be possible if there is an outside 
broker—a budget balancer. Nevertheless, settlement negotiations seldom if ever employ an 
outside broker who contributes his or her own money, nor has anyone proposed or implemented 
any other kind of efficient mechanism for settlement. Consequently, it is worth investigating 
whether the validity of the Priest-Klein hypotheses would be affected by relaxing the assumption 
that the Landes-Posner-Gould litigation condition is both necessary and sufficient, and instead 
assuming a plausible (albeit inefficient) bargaining mechanism. 

Like Friedman and Wittman (2007), we investigate the implications of the Chatterjee-
Samuelson mechanism. Under that mechanism, plaintiff and defendant each submit secret offers 
to a neutral party (or computer). If the plaintiff’s offer is greater than the defendant’s offer, the 
case goes to trial. If the plaintiff’s offer is less than or equal to the defendant’s offer, then the 
case settles for the average of the two offers. Although the Chatterjee-Samuelson mechanism is 
seldom used in actual litigation, it can be seen as a “reduced form of a more complicated but 
unspecified haggling between the plaintiff and defendant lawyers.” (Friedman and Wittman 
(2007), p. 110). We diverge from Friedman and Wittman (2007) in that we graft the Chaterjee-
Samuelson mechanism onto the Priest-Klein model rather than constructing a completely new 
model. 

We begin by making two simplifying assumptions.  First, as in asymmetric information 
models, Bechuk’s (1984) and Reinganum and Wilde’s (1986), we assume settlement costs are 
zero, ܵ = ܵ = ܵௗ = 0.  Second, we assume ߳ and ߳ௗ are distributed independently and 

according to joint probability distribution	 ఙ݂,ఙ൫߳, ߳ௗ൯ = ఙ݂൫߳൯ ఙ݂(߳ௗ) such that ݂(ݔ) ߪ= ఙ݂(ݔߪ), ݂(ݔ) is symmetric around 0, and [ݔ]ܨ is the corresponding standard cumulative 
distribution.   

The mechanism proceeds as follows. The plaintiff receives a signal ܻ = ܻᇱ + ߳ and the 

defendant receives a signal ௗܻ = ܻᇱ + ߳ௗ. Then, the plaintiff makes a secret settlement demand, 

                                                            
5 The literature uses “ex post inefficiency” to refer to cases where there is a mutually beneficial agreement 

but the parties fail to reach it. In the litigation-settlement model, there is always ex post inefficiency, because the 
parties would always be better off settling for the judgment amount and thus saving all litigation costs. Thus, the 
relevant inefficiency must be relative to the parties’ ex ante evaluation of the situation. That is, there is inefficiency 
if a settlement would have made both parties think they were better off, given their ex ante evaluations of the case. 
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) ܻ), and the defendant makes a secret settlement offer, ݀( ௗܻ). If  ≤ ݀, the parties settle at ାௗଶ ; otherwise, parties litigate.  

Like Friedman and Wittman (2007), we consider pure strategies contingent on the 
realized signal. Thus, a plaintiff’s strategy is a measurable function (∙): ࡾ →  ା that assigns theࡾ

demand   = ൫ ܻ൯ ∈ [0,∞) when it observes signal ܻ. Similarly, a defendant’s strategy is a 

measurable function ݀(∙): ࡾ → ݀  that assigns the demand ࡾ = ݀( ௗܻ) ∈ (−∞,∞) when it 
observes signal ௗܻ. The objective of the plaintiff is to maximize expected net payments, 
conditioned on its realized signal ܻ and the defendant’s strategy ݀(∙). The defendant’s object is 

to minimize expected net payments. 
There are several important differences, however, from Friedman and Wittman (2006). 

First, the support for the strategy functions is the entire real line. This means that we cannot work 
with uniform distributions, and consequently, we do not limit our attention to piecewise linear 
continuous equilibria. Second, the signals ܻ and ௗܻ are not independent. Instead, the plaintiff 

makes inferences about the distribution of ௗܻ based on ܻ, and likewise for the defendant. This 

complicates the analysis. The plaintiff estimates ௗܻ  using a compound distribution: it first 
figures out the conditional distribution of ܻ′ given ܻ, and then conditions the expected 

distribution of ௗܻ on its expected conditional distribution of ܻ′. The defendant does likewise. 
Third, if the parties cannot settle, the parties’ respective payoffs at trial are determined by the 
true value of ܻ′. In contrast, Friedman and Wittman assume the trial judgment lies halfway 
between the plaintiff’s demand and the defendant’s offer 

Since the plaintiff and the defendant are considered to be playing a different game for 
each ߪ > 0, we index their strategies by ߪ and refer to each game as the “ߪ-game.” The payoff 
function for the plaintiff in the ߪ-game is: 

 Π൫, ܻ, ݀( ௗܻ; ;(ߪ =൯ߪ න ቆ݀( ௗܻ; (ߪ + 2 ቇ{|ஸௗ(;ఙ)} ఙ݂൫ ௗܻห ܻ൯݀ ௗܻ
+	න ൫ܲܬߙ൫ܻᇱ ≥ ܻ∗| ܻ, ݀( ௗܻ; ൯(ߪ − ൯{|வௗ(;ఙ)}ܥ ఙ݂൫ ௗܻห ܻ൯݀ ௗܻ 

 
The first-term in the right-hand side is the expected value of settling, and the second-term is the 

expected value of litigating. ఙ݂൫ ௗܻห ܻ൯ and ఙ݂൫ ܻห ௗܻ൯ represent the conditional distribution of the 

other party’s signal given the party’s own signal. Likewise, the payoff for the defendant is:  	
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Πௗ൫݀, ௗܻ, ൫ ܻ; ;൯ߪ =൯ߪ න ቆ݀ + ൫ ܻ; ൯2ߪ ቇ{|൫;ఙ൯ஸௗ} ఙ݂൫ ܻห ௗܻ൯݀ ܻ
+	න ൫ܲܬ൫ܻᇱ ≥ ܻ∗| ௗܻ, ) ܻ; ൯(ߪ + {ௗ൯൛ห൫;ఙ൯வௗܥ ఙ݂൫ ܻห ௗܻ൯݀ ܻ 

 
A Nash equilibrium of the ߪ-game is defined as follows: 

 

Definition. A Nash equilibrium (NE) of the ߪ-game is a strategy pair ቀ൫ ܻ; ,൯ߪ ݀( ௗܻ;  ቁ(ߪ

such that ൫ ܻ; ൯ߪ = argmaxΠ൫, ܻ, ݀( ௗܻ; ;(ߪ )݀ ൯ andߪ ௗܻ; (ߪ = argminௗΠௗ൫݀, ௗܻ, ൫ ܻ; ;൯ߪ   .൯ߪ
 

For hypotheses that pertain to results in the limit, we consider continuous families of 

Nash equilibria ቀ൫ ܻ; ,൯ߪ ݀( ௗܻ;   .approaches zero ߪ ቁ as(ߪ

 
Definition. A continuous family of Nash equilibria is a set of Nash equilibrium strategy 

pairs ቀ൫ ܻ; ,൯ߪ ݀( ௗܻ; ߪ ቁ defined for each(ߪ ∈ (0, തߪ ത) for someߪ > 0 such that ൫ ܻ;  ൯ߪ
and ݀( ௗܻ;  Given a continuous family, a limit equilibrium is a .ߪ are both continuous in (ߪ

pair of strategies, ቀ൫ ܻ; 0൯, ݀( ௗܻ; 0)ቁ, such that the following conditions hold true: 

 ൫ ܻ; 0൯ = limఙ→ ൫ ܻ;   ,൯ߪ
 ݀( ௗܻ; 0) = limఙ→ ݀( ௗܻ;  ,(ߪ
 ൫ ܻ; 0൯ = argmax	limఙ→ Π൫, ܻ, ݀( ௗܻ; ;(ߪ ൯ߪ =argmax	limఙ→ Π൫, ܻ, ݀( ௗܻ; 0);  ൯, andߪ

 ݀( ௗܻ; 0) = argminௗ limఙ→ Πௗ൫݀, ௗܻ, ൫ ܻ; ;൯ߪ ൯ߪ =argminௗ limఙ→ Πௗ൫݀, ௗܻ, ൫ ܻ; 0൯;   .൯ߪ
 

Therefore, a limit equilibrium is the limit (as ߪ approaches 0) of a continuous family of Nash 
equilibria defined over ߪ ∈ (0,  .game in the limit-ߪ ത), and is itself a Nash equilibrium of theߪ
Note first that, as Friedman and Wittman (2007) observed, existence of a Nash equilibrium is not 
guaranteed even for a fixed ߪ value because we are restricting our analysis to pure strategy Nash 
equilibria. Even less obvious is the existence of a limit equilibrium. Nevertheless, in the analysis 
contained in this Section and the Appendix, we show that regardless of the shape of the dispute 
distributions, ݃(ܻᇱ), there are always at least four distinct classes of limit equilibria, each one 
consisting of an infinite number of limit equilibria. Given a limit equilibrium, we can readily 
calculate the plaintiff trial win rate in the limit.  

http://law.bepress.com/usclwps-lss/167



17 
 

Friedman and Wittman (2007) limit their substantive analysis to symmetric Nash 
equilibria, and we do so as well in this Section.6  Their definition of symmetry would translate to 
our set-up as follows: 

 

Definition. The strategies ൫ ܻ; )݀ ൯ andߪ ௗܻ;  are symmetric around ܻ∗ if there exists (ߪ

some ܭ > 0 such that, for all ܻ, we have (ܻ; (ߪ = ܭ − ݀(2ܻ∗ − ܻ; ;ܻ)݀ ,or equivalently ,(ߪ (ߪ = ܭ − ∗2ܻ) − ܻ;  .(ߪ
 
It turns out that for all limit equilibria that are symmetric around ܻ∗, the Fifty Percent Limit 
Hypothesis will hold true. In fact, if a limit equilibrium is symmetric, the win rate will approach 
fifty percent regardless of ߙ. As a result, the Asymmetric Stakes Hypothesis does not hold for 
symmetric limit equilibria.  

The Proposition below summarizes our results for symmetric limit equilibria:   
 

PROPOSITION 2: PRIEST-KLEIN HYPOTHESES UNDER A MODEL WITH AN INCENTIVE-
COMPATIBLE MECHANISM AND SYMMETRIC LIMIT EQUILIBRIA. Under the assumptions for the 
hypotheses set out at the end of Section 2, and in addition assuming ܵ = ܵ = ܵௗ = 0 and ߳ and ߳ௗ are distributed with mean zero according to	 ఙ݂,ఙ൫߳, ߳ௗ൯ = ఙ݂൫߳൯ ఙ݂൫߳൯ such that ݂(ݔ) =ఙ݂(ݔߪ) with full support over ࡾଶ, and ݂(ݔ) is symmetric around 0 and is continuously 
differentiable, then, under the Priest-Klein model with Chatterjee-Samuelson bargaining, we 
have the following results: 
 

 PRIEST-KLEIN HYPOTHESES FOR SYMMETRIC LIMIT EQUILIBRIA. For all families of Nash 
equilibria that are symmetric in the limit, (i) the Trial Selection Hypothesis, the 
Irrelevance of Dispute Distribution Hypothesis, and the Fifty-Percent Limit Hypothesis 
are valid, (ii) the Fifty-Percent Bias Hypothesis is valid for sufficiently small ߪ, and (iii) 
the Asymmetric Stakes Hypothesis is false. In addition, these results remain valid even 
when parties use Bayes’ rule and their knowledge of the distribution of disputes to 
estimate the plaintiff’s probability of prevailing and to formulate their offers. 
 

 EXISTENCE OF A SYMMETRIC LIMIT EQUILIBRIUM. There exists at least one symmetric limit 
equilibrium for ߙ sufficiently close to 1. In particular, there exists a symmetric 2-step 
limit equilibrium in which the plaintiff and the defendant both offer the same two (high 
and low) settlement values, but at two different thresholds, which are symmetric around 0 
(when scaled by ߪ and normalized by ܻ∗). Specifically, there exists ߝ > 0 and some 
suitable value ܲ(ߙ) ∈ (0,1) such that for each ߙ ∈ (1 − ,ߝ 1 +  the following condition (ߝ

                                                            
6 We explore asymmetric equilibria in the Appendix. 
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holds: there exists ߪ > 0 such that for all ߪ ∈ (0,  ), there will generally7 exist a pairߪ

of continuous functions ቀߛ(ߪ), ቁ(ߪ)ௗߛ : ାࡾ → ଶ such that limఙ→శࡾ (ߪ)ߛ = ߛ =limఙ→శ ߪ and for each (ߪ)ௗߛ ∈ (0, ൫), the following ቀߪ ܻ; ,൯ߪ ݀( ௗܻ;  ቁ is a Nash(ߪ

equilibrium in the ߪ-game and its limit is a limit equilibrium:8 ൫ ܻ; ൯ߪ = ቊߙ)ܬ + ߙ) − ((ߙ)ܲ(1 − ܥ + 	for	ௗܥ ܻ ≥ 	ܻ∗ − 	for		0(ߪ)ߛߪ ܻ < 	ܻ∗ − (ߪ)ߛߪ  

݀( ௗܻ; (ߪ = ൜ߙ)ܬ + ߙ) − ((ߙ)ܲ(1 − ܥ + 		for	ௗܥ ௗܻ ≥ 	ܻ∗ + 		for	0(ߪ)ௗߛߪ ௗܻ < 	ܻ∗ + (ߪ)ௗߛߪ  

In addition, this symmetric limit equilibrium exists even when parties use Bayes’ rule. 
 
The proof of Proposition 2 is in the Appendix. The general result can be seen by applying 

the same change of variables as before and looking at the symmetry of the region of integration 
(along the line ݒ =  when the parties use symmetric strategies. Here we provide a very brief (ݑ−
sketch as to how to construct a two-step symmetric limit equilibrium. We begin by establishing 
the existence of a suitable ߛ value for ߙ = 1. This is given by first writing down the condition 
under which the plaintiff’s best response condition and the defendant’s best response condition 
would collapse to one condition, and then applying the Intermediate Value Theorem to it. Second, 
by continuity of the equations in ߙ, we can also conclude that there is some neighborhood around ߙ = 1 for which we can similarly find appropriate (ߙ)ߛ values that serve as a symmetric 
threshold in the limit even for ߙ ≠ 1. Third, the existence of a pair of continuous functions ߛ(ߪ) 
and ߛௗ(ߪ), each converging to ߛ, is guaranteed by the Implicit Function Theorem as long as the 
Jacobian does not vanish at ߪ = 0. The Jacobian does not vanish and is indeed nonzero when 
simulated with normal distributions. Finally, given this region of integration, we can easily 
derive results for all hypotheses pertaining to limit results.  

Figure 2 depicts the symmetric limit equilibrium strategies for ߙ = 1. 

                                                            
7 We say “generally” because the proof makes use of the Implicit Function Theorem and thus will depend 

on a particular Jacobian not taking on the value of zero at the particular equilibrium value. Because the particular 
Jacobian is not identically zero, this will generally be the case, although it may be possible to construct an example 
in which the Jacobian can take on the value of zero at the particular equilibrium point. Calculation using 
Mathematica confirmed that the Jacobian is indeed nonzero for normal distributions. 

8 The stability of this Nash equilibrium (over thresholds) was checked for normal distributions using 
Mathematica simulations. 
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Plaintiff demands and defendant offers zero, when the case is below the decision standard 
by more than ߛ.  Similarly, plaintiff demands and defendant offers ܬ − ܥ +  when the case ݀ܥ

above the decision standard by more than ߛ.  The plaintiff demand exceeds the defendant offer 
only near the decision standard.  Thus, the parties settle cases far from the decision standard and 
litigate only cases close to the decision standard.  The validity of Fifty-Percent Limit Hypothesis 
follows. 

Figure 3 depicts the corresponding litigation set. 
 

Figure 2. Symmetric Limit Equilibrium (ࢻ = )9 

 
Figure 3. Litigation Set under Bargaining (ࢻ = ) 

                                                            
9 Note that, even though for legibility, the graph makes it look like (ݑ)	is slightly higher than ݀(ݒ)	to the 

left of –  .in fact the two are at exactly the same height in these regions ,ߛ+ and to the right of ߛ
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ܥ ଵܵ(ݑ, (ݒ = ,ݑ)} ݑ|(ݒ > ,ߛ− ݒ <  plane when the parties- ݒݑ is the set of cases litigated in the {ߛ
use the Chatterjee-Samuelson mechanism as ߪ approaches zero. In the case depicted above, ܴଵ(ݑ, (ݒ = ቄ(ݑ, [ݑ]ܨߙቚ(ݒ − [ݒ]ܨ > ቅ, the set representing litigated disputes under the original 

model, is properly contained in ܥ ଵܵ(ݑ, ܥ and the set 10,(ݒ ଵܵ(ݑ, (ݒ ∩ ܴଵ(ݑ,   can be considered(ݒ
the region of ex post inefficiency.  

It is somewhat surprising that, under the Chatterjee-Samuelson mechanism, the plaintiff 
trial win rate will be fifty-percent in the limit, even with asymmetric stakes (ߙ ≠ 1). The 
intuition behind this result is that for ߙ ≠ 1 but sufficiently close to 1, even though ܴఈ(ݑ,  will (ݒ
be asymmetric with respect to the line ݒ =  we will be able to find a symmetric limit ,ݑ−
equilibrium such that ܵܥఈ(ݑ, (ݒ = ,ݑ)} ݑ|(ݒ > ,(ߙ)ߛ− ݒ <  will be symmetric with {(ߙ)ߛ
respect to the line ݒ =   .ݑ−

It is important to note that the symmetric equilibria explored above are not the only 
equilibria. For example, there is the trivial class of equilibria in which all cases go to trial 
because plaintiff’s demand is absurdly high and defendant’s offer is unreasonably low. Friedman 
and Wittman (2007). In addition, the Appendix discusses two additional classes of asymmetric 
equilibria (Propositions A1 and A2). Most of the Priest-Klein hypotheses are false under these 
equilibria.  

 
5. Asymmetric Information  

 
A. Priest-Klein Model and Asymmetric Information 
 
Although Priest and Klein (1984) did not discuss asymmetric information, their model 

can be used to explore asymmetric information.  This can be done by varying, ߚ, the parameter 

that indicates how much more or less accurate the plaintiff is than the defendant in estimating ܻ′.  
That is, ߚ =  , where the parties predict case merit, ܻᇱ, with errors ߳ and ߳ௗ that areߪ/ௗߪ

distributed with mean zero and standard deviations ߪ and ߪௗ. If ߚ > 1, then the plaintiff has an 

informational advantage over the defendant; conversely, if ߚ < 1, then the defendant has 
superior information.  In some ways, this version of the Priest-Klein model is a more flexible 
way of modeling asymmetric information than the standard screening and signaling models, 
because under this version of the Priest-Klein model, information is a continuous variable. 
Whereas under standard asymmetric information  models, one part is fully informed while the 
other knows only the distribution of all disputes, under the asymmetric information version of 
the Priest-Klein model, informedness can be varied continuously by adjusting ߪ and ߪௗ. Large 

                                                            
10 It seems likely that this is true generally, because it would be odd for cases to settle under the Chatterjee-

Samuelson mechanism that would not settle under an ex post efficient mechanism (as implicitly assumed by Priest 
and Klein). Nevertheless, we were not able to prove this result in greater generality. Because we are assuming 

settlement costs are zero in this section, we plotted ܴଵ(ݑ,  under the assumption that (ݒ
 = ଶଷ. 
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 means that the plaintiff isߪ  means the plaintiff has practically no information, very smallߪ

very well informed, and intermediate values mean intermediate levels of information.  ߪௗ 
similarly indicates the degree to which the defendant is informed. 

If plaintiff and defendant differ in their ability to predict the merit of the case, then, even 

when ఙ݂,ఙ൫߳, ߳ௗ൯ is bivariate normal, the joint probability function will not be symmetric in ߳ 

and ߳ and thus the limit value will not equal to fifty percent (except by coincidence).  Instead, 

the plaintiff trial win rate will vary predictably with the information asymmetry.  When the 
stakes are equal, (i.e. α=1), the party that can predict trial outcomes more accurately will win 
more often at trial.  This leads to the following Proposition.  
 

PROPOSITION 3: PRIEST-KLEIN MODEL AND ASYMMETRIC INFORMATION.  Under the 
assumptions for the hypotheses set out at the end of Section 2 except ߚ ≠ 1:  

 

 If  
ିௌ < ߙ < 1 + ିௌ , the plaintiff trial win rate is (comparatively) higher the more 

(comparatively) accurately plaintiff can estimate the true ܻ′, and vice versa.  In other 
words, given ߚଵ < ଶ, limఙ→శߚ ఈܹ,ఙ,ఉభఙ(ܻ∗) < limఙ→శ ఈܹ,ఙ,ఉమఙ(ܻ∗).  Furthermore, as ߚ 

approaches infinity (that is, plaintiff has full-knowledge), the plaintiff trial win rate will 
approach one; and as ߚ approaches zero (that is, defendant has full-knowledge), the 

plaintiff trial win rate will approach zero. If ߙ > 1 + ିௌ , the plaintiff trial win rate is 

one, so it does not vary with ߚ.  When ߙ ≤ ିௌ , all cases settle, so the plaintiff trial win 

rate is undefined. If ߙ = 1 + ିௌ , limఙ→శ ఈܹ,ఙ,ఉభఙ(ܻ∗) < limఙ→శ ఈܹ,ఙ,ఉమఙ(ܻ∗) or limఙ→శ ఈܹ,ఙ,ఉభఙ(ܻ∗) = limఙ→శ ఈܹ,ఙ,ఉమఙ(ܻ∗) = 1. 

 

 The Irrelevance of Dispute Distribution Hypothesis is true, but the Fifty-Percent Limit, 
Asymmetric Stakes, and Fifty-Percent Bias Hypotheses are false. 

 
The first part of the proposition is proved in the Appendix.  The validity of the Irrelevance 

of Dispute Distribution Hypothesis for asymmetric information (ߚ ≠ 1) was proved in Lee and 
Klerman (2015), because the proof in that paper did not assume ߚ = 1.  The falsity of the Fifty-
Percent Limit, Asymmetric Stakes, and Fifty-Percent Bias Hypotheses follows from the first part 
of the proposition.  If the plaintiff trial win rate is not fifty-percent in the limit, the Fifty-Percent 
Limit Hypothesis is obviously false.  To see the falsity of the Asymmetric Stakes hypothesis, 
consider α a little less than one, but β as it approaches infinity.  According to the first part of 
Proposition 3, the plaintiff trial win rate approaches one, even though according to the 
Asymmetric Stakes Hypothesis, the plaintiff trial win rate should be less than fifty percent.  The 
falsity of the Fifty-Percent Bias hypothesis is also apparent when one considers small ߪ as ߚ 
approaches infinity.  Under these circumstances, if ߚ is large enough, the plaintiff trial win rate 
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can be arbitrarily close to one, so the plaintiff trial can always be farther from fifty-percent than 
the plaintiff trial win rate if all cases were litigated (unless, of course, the full distribution of 
cases contained only cases plaintiff would win or only cases the plaintiff would lose). 

 
B. Priest-Klein Hypotheses under Standard Screening and Signaling Models 
 

Proposition 3 is similar to results under the standard screening and signaling models.  To 
establish that similarity we explore selection effects under the standard asymmetric information 
models and establish which of the Priest-Klein hypotheses are valid under the canonical 
screening and signaling models.  Although no one has systematically explored all of the Priest-
Klein hypotheses under the standard asymmetric information models, it is relatively easy to show 
that all but the Trial Selection Hypothesis are false. 

 The canonical asymmetric information models are Bechuk’s (1984) screening model and 
Reinganum and Wilde’s (1986) signaling model. There has been surprisingly little work on 
selection under these models. Hylton (1993) and Shavell (1996) showed that Priest and Klein’s 
prediction that plaintiffs will generally win fifty-percent of litigated cases is false under the 
screening model. Wicklengren (2013) showed that, under both the screening and signaling 
models, the informed party wins a greater fraction of the litigated cases than if all cases had gone 
to trial. Klerman and Lee (2014) showed that the No Inferences Hypothesis is false under both 
the screening and signaling models.  

 To explore selection effects under the signaling model, Reinganum and Wilde’s (1986) 
model must be modified so that the parties disagree about the probability that the plaintiff wins 
rather than about damages. See Klerman and Lee (2014); Wickelgren (2013 p. 342).  Under 
Bebchuk’s (1984) screening  model and the modified Reinganum and Wilde (1986) signaling 
model, the proportion of litigated cases won by the party with the informational advantage will 
be larger than the proportion of cases it would have won if all cases were litigated.  See 
Wickelgren (2015, p. 344).  The prediction of Proposition 2, however, is more extreme, because 
it predicts that a party that knows its type (the true ܻᇱ), will win 100 percent of the time.  This 
will not generally be true under standard asymmetric information models.  This extreme 
prediction follows from the fact that, in Priest and Klein’s model, a person’s type is a real-
number representation of the merits of the case, and the real line is divided into two halves: in 
one part the plaintiff wins with certainty, and in the other, the defendant wins with certainty.  
Thus, if a party knows his type, he can predict the outcome with certainty and thus will refrain 
from litigation if the outcome is a certain loss for him.  In contrast, in the standard asymmetric 
information models, party type is only the probability that the plaintiff will prevail, which ranges 
from zero to one and can take on all intermediate values.  As a result, for such models, even if a 
party knows its type, it knows only the probability with which it will prevail, which is in most 
cases neither zero nor one. 

Other than the extreme implications of the Priest-Klein model discussed in in the 
previous paragraph, the selection implications of the modified Priest-Klein model and canonical 
asymmetric information models are similar.  The fact noted above, that the informed party wins 
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more often in litigated cases than if all cases were litigated, is sufficient to show that the Trial 
Selection Hypothesis is true under standard asymmetric information models.   

The falsity of the Fifty Percent Bias Hypothesis under these models also follows from the 
fact that selection favors the informed party. That is, it is not true that the plaintiff trial win rate 
will be closer to fifty percent than the plaintiff win rate if no cases settled. When defendants have 
superior information, the plaintiff trial win rate will be lower than the no-settlement plaintiff win 
rate. That is, the bias is toward zero. Thus, if the no-settlement plaintiff win rate were less than 
fifty percent, the plaintiff trial win rate would be farther from fifty percent than the no-settlement 
plaintiff win rate. If the no-settlement plaintiff win rate were greater than fifty percent, the 
plaintiff trial win rate might be closer to fifty percent than the distribution of all disputes, but it 
might also be so close to zero that it would be farther from fifty percent than the no-settlement 
win rate. Conversely, when the plaintiff has superior information, the plaintiff trial win rate will 
be higher than the no-settlement plaintiff win rate. That is, the bias would be toward 100 percent. 

The remaining three hypotheses – the Irrelevance of Dispute Distribution Hypothesis, the 
Fifty-Percent Limit Hypothesis, and the Asymmetric Stakes Hypothesis – are all hypotheses 
about the limit of the plaintiff trial win rate as both parties become increasingly accurate in 
predicting trial outcomes. Limit hypotheses are not directly applicable to the canonical 
asymmetric information models, because in such models one party has full information and the 
other party knows only the distribution of types. Nevertheless, the limit hypotheses can be 
meaningfully reinterpreted as hypotheses about the plaintiff trial win rate generally, without 
reference to limits. That is, the Irrelevance of Dispute Distribution Hypotheses could be 
interpreted to mean that the plaintiff trial win rate would not vary with the distribution of all 
disputes, the Fifty-Percent Limit Hypothesis could be interpreted to mean that the plaintiff trial 
win rate would be fifty percent when the stakes are symmetric, and the Asymmetric Stakes 
Hypothesis could be interpreted to mean that the plaintiff trial win rate would be greater or less 
than fifty percent depending on whether the plaintiff’ or defendant’s payoff were more affected 
by a trial victory. All three of these hypotheses are false. Because limits are irrelevant to the 
asymmetric information models, the rest of this section will call the Fifty Percent Limit 
Hypothesis simply the Fifty-Percent Hypothesis.  

The falsity of the Irrelevance of Dispute Distribution Hypothesis under canonical 
asymmetric information models was proved in Klerman and Lee (2014). That article explored 
the implications of changing the legal standard. It interpreted a change in the legal standard as a 
change in the distribution of disputes and showed that a change in the distribution of disputes led 
to changes in the plaintiff trial win rate. It proved this result under both the signaling and 
screening models and for situations both when the plaintiff had superior information and when 
the defendant had superior information.   The falsity of the Irrelevance of Dispute Distribution 
Hypothesis under the canonical model contrasts with its validity under the Priest-Klein model 
with asymmetric information. 

The falsity of the Fifty-Percent Hypothesis under canonical asymmetric information 
models follows directly from the falsity of the Irrelevance of Dispute Distribution Hypothesis. If 
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the percentage of plaintiff trial victories varies with the distribution of all disputes, the plaintiff 
trial win rate cannot always be fifty percent, even when stakes are equal. This is consistent with 
Hylton (1993) and Shavell (1996). 

The falsity of the Asymmetric Stakes Hypothesis follows from the invalidity of the Fifty-
Percent Hypothesis. It is easy to construct examples where the Asymmetric Stakes Hypothesis is 
false. Suppose, for example, that the defendant has slightly more at stake than the plaintiff, so a 
judgment for the plaintiff would cost the defendant $100 but benefit the plaintiff only $99. 
Suppose further that defendants have superior information, that half of defendants have a 90 
percent chance of losing, while half of defendants have a 60 percent chance of losing. If 
litigation costs are $10 for each party, the plaintiff’s optimal strategy is to offer $100 to all 
defendants. The defendants with a 90 percent chance of losing would accept the settlement offer, 
but the other defendants would reject. As a result, the plaintiff trial win rate would be 60 percent. 
This contradicts the Asymmetric Stakes Hypothesis, because that hypothesis would predict that 
the plaintiff trial win rate would be less than fifty percent, because the defendant had more at 
stake. It is easy to construct similar examples for the screening model when plaintiff has the 
informational advantage and for the signaling model. 

 
6. Conclusion 

 
This article updates Priest and Klein’s model to correct two problems. We show that most 

of Priest and Klein’s results remain valid when the model is modified to be consistent with Bayes’ 
rule and/or to include an incentive-compatible mechanism. In particular, the Trial Selection 
Hypothesis, Fifty-Percent Limit Hypothesis, Irrelevance of Dispute Distribution, and 
Asymmetric Stakes Hypothesis remain valid even if the parties use Bayes’ rule to calculate the 
mean and distribution of case merit. In addition, with the exception of the Asymmetric Stakes 
Hypothesis, these hypotheses remain valid for symmetric equilibria if the parties use the 
Chatterjee-Samuelson mechanism. Finally, Priest and Klein’s model can be used to explore 
asymmetric information and to show that, even when parties differ in the accuracy with which 
they can predict outcomes, only the Trial Selection and Irrelevance of Dispute Distribution 
Hypotheses remain valid.  Asymmetric information results are similar to results under standard 
screening and signaling models, except that under those models the Irrelevance of Dispute 
Distribution Hypothesis is false.   
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Appendix 
 

A.1. Priest-Klein Model with Bayesian Correction 
 

PROOF OF PROPOSITION 1. The proof of this and other propositions build on proofs of the original 
Priest and Klein hypotheses that are included in Lee and Klerman (2015). We note only that the key 
insight from Lee and Klerman (2015) was that the region of integration under the changed coordinate, ܴఈ(ݑ,  This fact, together with Chebyshev’s inequality and the convergence of .ߪ was invariant under ,(ݒ
an infinite series, allowed for a construction of a Lebesgue-integrable dominating function.  This then 
allowed us to take the limits under the integral under Lebesgue’s Dominated Convergence Theorem, and 
the result of the Irrelevance of the Distribution Dispute hypothesis immediately followed.  For the Fifty-
Percent Limit Hypothesis, we needed only that that the region of integration was symmetric around the 
line ݒ = ߙ which turned out to be true when ,ݑ− = 1 and ܨ[∙] =  ௗ[∙].  For the Asymmetric Stakesܨ
Hypothesis, we needed to show only that the region of integration was asymmetric around the line ݒ =  in the correct direction, so as to yield the limit greater than or less than fifth percent according to ݑ−
whether ߙ was greater than or less than 1.   

For the insight behind the proof of Proposition 1, we need to note only that all limit results will 
go through as long as we can take the limits under the integral pursuant to Lebesgue’s Dominated 
Convergence Theorem.  Although the region of integration is no longer invariant under ߪ in this case, 
constructing a Lebesgue-integrable dominating function does not actually require the actual region of 
integration to be invariant under ߪ, but only that the region of integration, for sufficiently small values of ߪ, can be contained in another region of integration that is in fact invariant under ߪ. 

As explained in the main text, the trial condition will be determined by the following inequality: ߙ ൭ ݂,ఙ൫ܻᇱ + ߳ − ܻ∗ −ܹᇱ൯݃(ܻ∗ +ܹ′)ܹ݀′ஶ ݂,ఙ൫ܻᇱ + ߳ − ܻ∗ −ܹᇱ൯݃(ܻ∗ +ܹ′)ܹ݀′ஶିஶ ൱
− ൭ ௗ݂,ఙ(ܻᇱ + ߳ௗ − ܻ∗ −ܹᇱ)݃(ܻ∗ +ܹ′)ܹ݀′ஶ ௗ݂,ఙ(ܻᇱ + ߳ௗ − ܻ∗ −ܹᇱ)݃(ܻ∗ +ܹ′)ܹ݀′ஶିஶ ൱ > ܥ − ܬܵ  

For a given ߪ > 0, we employ the following change of variables: ݑ = ᇱାఢି∗ఙ = ᇱାఢି∗ఙ , ݒ =ᇱାఢି∗ఙ = ᇱାఢି∗ఉఙ . Then by setting the dummy variable ߱ appropriately, we can rewrite ܴఈ,ఙ,ఙ(ܻᇱ; ܻ∗) as ܴఈ,ఙ,ఙ(ܻᇱ; ܻ∗) = ቄ(ݑ, ,ݑ)߮ߙቚ(ݒ (ߪ − ߮ௗ(ݒ, (ߪߚ > ିௌ ቅ = ܴఈ,ఙ,ఉఙ(ݑ, ;ݒ ܻ∗) 
where ߮(ݑ, (ߪ =  ,భ(ఠ)(∗ାఙ(௪ିఠ))ௗఠೠషಮ ,భ(ఠ)(∗ାఙ(௪ିఠ))ௗఠಮషಮ  and ߮ௗ(ݒ, (ߪߚ =  ,భ(ఠ)(∗ାఉఙ(௪ିఠ))ௗఠೡషಮ ,భ(ఠ)(∗ାఉఙ(௪ିఠ))ௗఠಮషಮ .   

Therefore, for each ߪ > 0,  
ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗) = ඵ ଵ݂,ఉ ൬ݑ − ,ݖ ݒ − ൰ߚݖ ோഀ,,ഁ(௨,௩;∗)ݒ݀ݑ݀  

Now the region of integration in the ݒݑ–plane will continue to depend on ߪ and ܻ∗. But still, we have  
  ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗)݃(ܻᇱ)ܻ݀ᇱஶ∗ ఈܲ,ఙ,ఙ(ܻᇱ; ܻ∗)݃(ܻᇱ)ܻ݀ᇱ∗ିஶ =  ܲఈ,ఙ,ఉఙ(ݖߪ + ܻ∗; ݖߪ)݃(∗ܻ + ஶݖ݀(∗ܻ ܲఈ,ఙ,ఉఙ(ݖߪ + ܻ∗; ݖߪ)݃(∗ܻ + ିஶݖ݀(∗ܻ  

 
Notice that there is an absolute lower limit ݑ and an absolute upper limit ̅ݒ such that, for each ߪ > 0 (where ߪ can be assumed to be sufficiently small) and for each ܻ∗ ∈ ,ݑ)ఈ,ఙ,ఉఙܴ	,ࡾ ;ݒ ܻ∗) is 

bounded above by ݒ = ݑ and bounded on the left side by ݒ̅ =  ,In this case	.ݑ
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ܲఈ,ఙ,ఉఙ(ݖߪ + ܻ∗; ݖߪ)݃(∗ܻ + ܻ∗) < ݃ ∬ ଵ݂,ఉ ቀݑ − ,ݖ ݒ − ௭ఉቁ {௨ஹ௨,௩ஸ௩ത|(௨,௩)}ݒ݀ݑ݀ , which will eventually 

decrease at least as fast as in |ݖ|ିଶ according to Chebyshev’s inequality. In this case, we can take the limit 
inside the integral. Then limఙ→శ 	  ܲఈ,ఙ,ఉఙ(ݖߪ + ܻ∗; ݖߪ)݃(∗ܻ + ஶݖ݀(∗ܻ ܲఈ,ఙ,ఉఙ(ݖߪ + ܻ∗; ݖߪ)݃(∗ܻ + ିஶݖ݀(∗ܻ =  limఙ→శܲఈ,ఙ,ఉఙ(ݖߪ + ܻ∗; ஶݖ݀(∗ܻ limఙ→శܲఈ,ఙ,ఉఙ(ݖߪ + ܻ∗; ିஶݖ݀(∗ܻ  

since ݃(ܻ′) is locally continuous at ܻ∗ and ݃(ܻ∗) ≠ 0. Meanwhile  limఙ→శܲఈ,ఙ,ఉఙ(ݖߪ + ܻ∗; ܻ∗) = limఙ→శ ඵ ଵ݂,ఉ ൬ݑ − ,ݖ ݒ − ൰ߚݖ =ோഀ,,ഁ(௨,௩;∗)ݒ݀ݑ݀ ඵ ଵ݂,ఉ ൬ݑ − ,ݖ ݒ − ൰ߚݖ ୪୧୫→బశோഀ,,ഁ(௨,௩;∗)ݒ݀ݑ݀  

Since limఙ→శܴఈ,ఙ,ఉఙ(ݑ, ;ݒ ܻ∗) =ቊ(ݑ, ߙቤ(ݒ ୪୧୫→బశ  ,భ(ఠ)(∗ାఙ(௨ିఠ))ௗఠೠషಮ୪୧୫→బశ  ,భ(ఠ)(∗ାఙ(௨ିఠ))ௗఠಮషಮ − ୪୧୫→బశ  ,భ(ఠ)(∗ାఉఙ(௩ିఠ))ௗఠೡషಮ୪୧୫→బశ  ,భ(ఠ)(∗ାఉఙ(௩ିఠ))ௗఠಮషಮ > ିௌ ቋ, and since each 

integrand is bounded above by ଵ݂(߱)݃, which is clearly Lebesgue-integrable, we can take the limits 
inside the integral once again and factor out ݃(ܻ∗). And therefore,  limఙ→శܴఈ,ఙ,ఉఙ(ݑ, ;ݒ ܻ∗) = ൝(ݑ, ߙอ(ݒ  ݂,ଵ(߱)݀߱௨ିஶ ݂,ଵ(߱)݀߱ஶିஶ −  ௗ݂,ଵ(߱)݀߱௩ିஶ ௗ݂,ଵ(߱)݀߱ஶିஶ > ܥ − ܬܵ ൡ

= ൜(ݑ, [ݑ]ܨߙฬ(ݒ − [ݒ]ௗܨ > ܥ − ܬܵ ൠ = ܴఈ(ݑ,  (ݒ
It thus suffices to show that there is an absolute upper limit ݒത > 0 and an absolute lower limit ݑ < 0 for ܴݑ)ߪߚ,ߪ,ߙ, ;ݒ ܻ∗), where ߪ is sufficiently small. We need show that, for sufficiently small ߪ, as ݑ 

approaches infinity, the boundary of ܴݑ)ߪߚ,ߪ,ߙ, ;ݒ ܻ∗) does not go to infinity, and as ݒ approaches 
negative infinity, the boundary does not go to negative infinity. But this is obvious since  ∞−ݑ߱݀((߱−ݑ)ߪ+∗ܻ)݃(߱)1,݂ ∞−∞߱݀((߱−ݑ)ߪ+∗ܻ)݃(߱)1,݂  and 

 ∞−ݒ߱݀((߱−ݒ)ߪߚ+∗ܻ)݃(߱)1,݂݀ ∞−∞߱݀((߱−ݒ)ߪߚ+∗ܻ)݃(߱)1,݂݀ , purely as functions defined in terms of variable ߪ, 

are continuous in ߪ at ߪ = 0. Since limits can be taken under the integrals, this establishes the results of 
Propositions 1-3 from Lee and Klerman (2015) – namely, the Irrelevance of Dispute Distribution 
Hypothesis, the Fifty-Percent Limit Hypothesis, and the Asymmetric Stakes Hypothesis. The Fifty-
Percent Bias 4 will also go through for sufficiently small ߪ, since it is a corollary of the Fifty-Percent 
Limit Hypothesis when ߪ is sufficiently small. Q.E.D. 
 

A.2. Priest-Klein Model with an Incentive-Compatible Mechanism 
 

PROOF OF PROPOSITION 2. To see the general result for all symmetric limit equilibria, notice first 
that the region of integration is defined as follows: ܥ ଵܵ(ݑ, (ݒ = ,ݑ)} |(ݒ limఙ→శ ݑߪ) + ܻ∗; (ߪ >limఙ→శ ݒߪ)݀ + ܻ∗; ݒ This region will be symmetric around the line	.{(ߪ =  if and only if we can ݑ−
show that whenever (ݑ, (ݒ ∈ ܥ ଵܵ(ݑ, ,ݒ−) we must also have ,(ݒ (ݑ− ∈ ܥ ଵܵ(ݑ,  But if the strategies are .(ݒ
symmetric around ܻ∗, we must have ݑߪ) + ܻ∗; (ߪ = ܭ − ݑߪ−)݀ + ܻ∗; ݒߪ)݀ and (ߪ + ܻ∗; (ߪ = ܭ ݒߪ−)− + ܻ∗; Therefore, we must have limఙ→శ .(ߪ ݑߪ) + ܻ∗; (ߪ > limఙ→శ ݒߪ)݀ + ܻ∗;  if and only (ߪ
if we have  limఙ→శ ݒߪ−) + ܻ∗; (ߪ > limఙ→శ ݑߪ−)݀ + ܻ∗;  Therefore, the region of integration is .(ߪ
symmetric in the limit, and the logic of Proposition 1 applies. To see that the result is robust to Bayesian 
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correction, we need to recognize only that the Bayesian correction at most changes the region of 
integration. But in this case, the region of integration is determined not directly by the parties’ estimates 
of the probability that the plaintiff will prevail, but by the (limit) equilibrium strategy. As long as the 
equilibrium is symmetric in the limit, the region of integration will be symmetric as well.  

To understand the symmetric limit equilibrium exhibited in the third part of Proposition 2, we 
begin by making the usual change of variables. Rewrite the plaintiff’s and the defendant’s strategies as 
follows: ൫ ܻ; ൯ߪ = )݀ and (ݑ) ௗܻ; (ߪ =  Our strategy is to look for Nash equilibrium strategies in .(ݒ)ܦ
which both parties employ a step function strategy with the same offer amounts but with different cutoff 
points. Consider the following type of Nash equilibrium. When the case estimate is very low (ݑ and ݒ are 
both highly negative), then both parties offer 0, so they settle for 0. When the case estimate is very high 
ܪ then both parties offer some ,(are both highly positive ݒ and ݑ) ∈ ܬߙ) − ,ܥ ܬ +  ௗ), and they settle forܥ

Has well. Notice that such ܪ value to exist, we must have ߙ < 1 + . We will show the result for the case 

with the Bayesian correction. The non-Bayesian case will then follow by plugging in ݃(ܻᇱ) = 1 where 
appropriate. 

Although the plaintiff and the defendant both converge on either 0 or at ܪ, they differ in their 
cutoff points, which we write as −ߛ(ߪ) < 0 for the plaintiff and ߛௗ(ߪ) > 0 for the defendant. For this 
pair of strategies to be an equilibrium for a fixed ߪ > 0, the plaintiff must be indifferent between 
demanding 0 and demanding ܪ at ݑ =  and the defendant must be indifferent between offering 0 ,(ߪ)ߛ−
and offering ܪ at ݒ =  It is easy to check that under this set-up, these two indifference conditions .(ߪ)ௗߛ
will be the necessary and sufficient conditions for the stated pair of strategies to be a Nash equilibrium.  

For a given ߪ > 0, the defendant is indifferent at ݒ = ܲ  if and only if (ߪ)ௗߛ ቀݑ < ݒ|(ߪ)ߛ− = ቁ(ߪ)ௗߛ ൬2ܪ൰ + ܲ ቀݑ ≥ ݒ|(ߪ)ߛ− = ቁ(ߪ)ௗߛ =(ܪ) ܲ ቀݑ < ݒ|(ߪ)ߛ− = ቁ(ߪ)ௗߛ (0)+ ܲ ቀݑ ≥ ݒ|(ߪ)ߛ− = ቁ(ߪ)ௗߛ ൫ܲ(ܻ′ ≥ ݒ|∗ܻ = ,(ߪ)ௗߛ ݑ ≥ ܬ((ߪ)ߛ− +  ௗ൯ܥ
Rewrite this as  ܲ ቀݑ < ݒ|(ߪ)ߛ− = ቁ(ߪ)ௗߛ ൬2ܪ൰+ ܲ ቀݑ ≥ ݒ|(ߪ)ߛ− = ቁ(ߪ)ௗߛ ቀܪ − ܲ ቀܻᇱ ≥ ܻ∗ቚݒ = ,(ߪ)ௗߛ ݑ ≥ ቁ(ߪ)ߛ− ܬ − ௗቁܥ = 0 

and call this Condition ଵܺ. For the plaintiff, we have  ܲ ቀݒ < ݑ|(ߪ)ௗߛ = ቁ(ߪ)ߛ− (0) + ܲ ቀݒ ≥ ݑ|(ߪ)ௗߛ = ቁ(ߪ)ߛ− ൬2ܪ൰= ܲ ቀݒ < ݑ|(ߪ)ௗߛ = ቁ(ߪ)ߛ− ቀܲߙ ቀܻᇱ ≥ ܻ∗ቚݑ = ,(ߪ)ߛ− ݒ < ቁ(ߪ)ௗߛ ܬ − +ቁܥ ܲ ቀݒ ≥ ݑ|(ߪ)ௗߛ = ቁ(ߪ)ߛ−  (ܪ)
Rewrite this as  ܲ ቀݒ ≥ ݑ|(ߪ)ௗߛ = ቁ(ߪ)ߛ− ൬2ܪ൰+ ܲ ቀݒ < ݑ|(ߪ)ௗߛ = ቁ(ߪ)ߛ− ቀܲߙ ቀܻᇱ ≥ ܻ∗ቚݑ = ,(ߪ)ߛ− ݒ < ቁ(ߪ)ௗߛ ܬ − ቁܥ = 0 

and call it Condition ܺଶ.  
 At this point, our strategy to constructing this continuous family of Nash equilibria is as follows. 
We first find out what the limit equilibrium must be if such a continuous family exists. Then we show that 
such the limit is indeed a Nash equilibrium of the ߪ-game in the limit. Then we appeal to the Implicit 
Function Theorem to conclude that there must indeed be continuous families in the small neighborhood 
around ߪ = 0 that satisfy the two indifference conditions.  
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Therefore, we take the limits of Condition ଵܺ and Condition ܺଶ as ߪ goes to zero. In the limit, we 
must have the following 

ݑ)ܲ     < ݒ|ߛ− = (ߛ ቀுଶቁ + ݑ)ܲ ≥ ݒ|ߛ− = ܪ)(ߛ − ܲ(ܻᇱ ≥ ݒ|∗ܻ = ,ߛ ݑ ≥ ܬ(ߛ− − (ௗܥ = 0 ݒ)ܲ= ≥ ݑ|ߛ = (ߛ− ቀுଶቁ + ݒ)ܲ < ݑ|ߛ = ᇱܻ)ܲߙ൫(ߛ− ≥ ݑ|∗ܻ = ,ߛ− ݒ < ܬ(ߛ −  .൯ܥ
  

Notice  ܲ(ݑ < ݒ|ߛ− = (ߛ = limఙ→శܲ ቀݑ < ݒ|(ߪ)ߛ− = = ቁ(ߪ)ௗߛ limఙ→శ ൭ ݖߪ)݃ + ܻ∗)݂൫ݖ − (ߪ)ߛ−൫ܨ൯(ߪ)ௗߛ − ஶିஶݖ൯݀ݖ  ݖߪ)݃ + ܻ∗)݂൫ݖ − ஶିஶݖ൯݀(ߪ)ௗߛ ൱ 

= න ݖ)݂ − ߛ−)ܨ(ߛ − ஶݖ݀(ݖ
ିஶ  

 The last equality comes from Lebesgue’s Dominated Convergence Theorem since  |݃(ݖߪ + ݖ)݂(∗ܻ (ߪ)ௗߛ−)ܨ((ߪ)ௗߛ− − |(ݖ ≤ ݃௨݂(ݖ − ݒ)ܲ ,Likewise .ݖ which must integrate to ݃௨over all ((ߪ)ௗߛ ≥ ݑ|ߛ = (ߛ− = limఙ→శܲ ቀݒ ≥ ݑ|(ߪ)ௗߛ =  ቁ(ߪ)ߛ−

= limఙ→శ ቌ ݖߪ)݃ + ܻ∗)݂ ቀݖ + ቁ(ߪ)ߛ ݖ൫ܨ − ஶିஶݖ൯݀(ߪ)ௗߛ  ݖߪ)݃ + ܻ∗)݂ ቀݖ + ቁ(ߪ)ߛ ஶିஶݖ݀ ቍ 

= න ݖ)݂ + ݖ)ܨ(ߛ − ஶݖ݀(ߛ
ିஶ = න ݖ−)݂ + ݖ−)ܨ(ߛ − ஶݖ݀(ߛ

ିஶ = න ݖ)݂ − ߛ−)ܨ(ߛ − ஶݖ݀(ݖ
ିஶ= ݑ)ܲ < ݒ|ߛ− =  (ߛ

In other words, given the symmetry of ݂, it is clear that ܲ(ݑ < ݒ|ߛ− = (ߛ = ݒ)ܲ ≥ ݑ|ߛ =  (ߛ−
and likewise ܲ(ݑ ≥ ݒ|ߛ− = (ߛ = ݒ)ܲ < ݑ|ߛ =  ,Furthermore .(since we have no probability masses) (ߛ−
in the limit we will also have ܲ(ܻᇱ ≥ ݑ|∗ܻ = ,ߛ− ݒ < (ߛ = 1 − 	ܲ(ܻᇱ ≥ ݒ|∗ܻ = ,ߛ ݑ ≥  This can be .(ߛ−
seen as follows: limఙ→శ ܲ ቀܻᇱ ≥ ܻ∗ቚݑ = ,(ߪ)ߛ− ݒ < ቁ(ߪ)ௗߛ = limఙ→శ  ݖߪ)݃ + ݖ)݂(∗ܻ + (ߪ)ௗߛ)ܨ((ߪ)ߛ − ஶݖ݀(ݖ ݖߪ)݃ + ݖ)݂(∗ܻ + (ߪ)ௗߛ)ܨ((ߪ)ߛ − =ஶିஶݖ݀(ݖ  limఙ→శ݃(ݖߪ + ݖ)݂(∗ܻ + (ߪ)ௗߛ)ܨ((ߪ)ߛ − ஶݖ݀(ݖ limఙ→శ݃(ݖߪ + ݖ)݂(∗ܻ + (ߪ)ௗߛ)ܨ((ߪ)ߛ − ஶିஶݖ݀(ݖ =  ݖ)݂ + ߛ)ܨ(ߛ − ஶݖ݀(ݖ ݖ)݂ + ߛ)ܨ(ߛ − ஶିஶݖ݀(ݖ  

 
Similarly, we have limఙ→శ ܲ ቀܻᇱ ≥ ܻ∗ቚݒ = ,(ߪ)ௗߛ ݑ ≥ ቁ(ߪ)ߛ− = limఙ→శ  ݖߪ)݃ + ܻ∗)݂൫ݖ − ݖ)ܨ൯(ߪ)ௗߛ + ஶݖ݀((ߪ)ߛ ݖߪ)݃ + ݖ)݂(∗ܻ − ݖ)ܨ((ߪ)ௗߛ + =ஶିஶݖ݀((ߪ)ߛ  ݖ)݂ − ݖ)ܨ(ߛ + ஶݖ݀(ߛ ݖ)݂ − ݖ)ܨ(ߛ + ஶିஶݖ݀(ߛ =  ݓ−)݂ − ݓ−)ܨ(ߛ + ିஶݓ݀(ߛ ݓ−)݂ − ݓ−)ܨ(ߛ + =ஶିஶݓ݀(ߛ  ݓ)݂ + ߛ)ܨ(ߛ − ିஶݓ݀(ݓ ݓ)݂ + ߛ)ܨ(ߛ − ஶିஶݓ݀(ݓ = 1 −  ݖ)݂ + ߛ)ܨ(ߛ − ஶݖ݀(ݖ ݖ)݂ + ߛ)ܨ(ߛ − ஶିஶݖ݀(ݖ  

 
Therefore, in the limit we have ܲ(ܻᇱ ≥ ݑ|∗ܻ = ,ߛ− ݒ < (ߛ = 1 − 	ܲ(ܻᇱ ≥ ݒ|∗ܻ = ,ߛ ݑ ≥  This .(ߛ−

means that if we choose ܪ such that  ܪ − ൬1 −  (௭ାఊ)ி(ఊି௭)ௗ௭ಮబ (௭ାఊ)ி(ఊି௭)ௗ௭ಮషಮ ൰ ܬ − ௗܥ = ߙ	 ൬  (௭ାఊ)ி(ఊି௭)ௗ௭ಮబ (௭ାఊ)ி(ఊି௭)ௗ௭ಮషಮ ൰ ܬ ܪ , then the two conditions collapse into one in the limit. This will be true ifܥ− = ߙ൫ܬ	 + (1 − ൯(ߙ)ܲ(ߙ +
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ௗܥ − (ߙ)ܲ  where	ܥ = 1 −  (௭ାఊ)ி(ఊି௭)ௗ௭ಮబ (௭ାఊ)ி(ఊି௭)ௗ௭ಮషಮ . At this point, we show that a suitable ߛ > 0 value does 

exist such that the two conditions (now one) are satisfied: ܲ(ݑ < ݒ|ߛ− = (ߛ ൬2ܪ൰ + ݒ)ܲ < ݑ|ߛ = ᇱܻ)ܲߙ൫(ߛ− ≥ ݑ|∗ܻ = ,ߛ− ݒ < ܬ(ߛ −  ൯ܥ
Suppose ߙ = 1 so that ܪ = ܬ	 + ௗܥ − ߛ . Atܥ = 0, this equation is greater than ቀଵଶቁ ቀାିଶ ቁ − ቀଵଶቁ  ,ܥ

which is positive for reasonable values of ܥ and ܥௗ. As ߛ approaches infinity, the first term approaches 0, 
and the second term approaches −ܥ, which is strictly negative. Therefore, by the Intermediate Value 
Theorem, there must be at least one value of ߛ for which the equation is true. By continuity, for ߙ close to 
1, the same argument shows that such ߛ must also exist generally.  
 To establish that this is indeed a Nash equilibrium in the limit, we must also show that for all 
values of ܻ below some threshold, the plaintiff cannot do better than demanding 0, and for all values of ܻ above the threshold the plaintiff cannot do better than demanding ܪ, and similarly for the defendant. 
By symmetry, we need only show one party’s case. Notice first that, given the plaintiff’s strategy, it is 
never optimal at any ௗܻ for the defendant to make an offer strictly below 0 because this strategy is strictly 
dominated by the offer of 0. For all cases that would have litigated had the defendant offered 0, the 
outcome is the same; but all cases that would have settled had the defendant offered 0, the defendant will 
incur a minimum loss of ܥௗ. Second, it is also never optimal at any ௗܻ for the defendant to make a 
settlement offer that is strictly between 0 and ܪ. This is because the plaintiff is playing by the 
discontinuous 2-step strategy of playing either 0 or ܪ himself. Therefore, if the defendant were to make a 
settlement offer strictly between 0 and ܪ, he will end up (i) litigating all the cases he would have litigated 
had he offered 0 instead (that is, those cases in which the plaintiff observes ܻ above the threshold) but (ii) 
will also be settling all other cases (that is, those cases in which the plaintiff observes ܻ below the 
threshold) at a higher settlement value than had he simply offered 0. Therefore he’s better off offering 0 
than any intermediate value. Third, it is never optimal for the defendant to make a settlement offer strictly 
greater than ܪ, since that is dominated by an offer of ܪ. Finally, the indifference condition shows that 
after some threshold, it is superior still for the defendant to offer ܪ than to offer 0. Therefore, the 
defendant’s best response to plaintiff’s strategy is the specified 2-step function, and likewise for the 
plaintiff.  

Now we show that there exist a pair of continuous functions ቀߛ(ߪ), ቁ(ߪ)ௗߛ : ାࡾ → ଶ such that limఙ→శࡾ (ߪ)ߛ = ߛ = limఙ→శ ൫and ቀ (ߪ)ௗߛ ܻ; ,൯ߪ ݀( ௗܻ;  ,Again .ߪ ቁ is a Nash equilibrium for each(ߪ

by continuity, we need only show these are true for ߙ = 1. We rewrite Conditions ଵܺ and ܺଶ as follows: 

ଵܺ(ߪ, ,ଵݔ (ଶݔ = ൭ ݖߪ)݃ + ݖ)݂(∗ܻ − ଵݔ−)ܨ(ଶݔ − ஶିஶݖ݀(ݖ  ݖߪ)݃ + ݖ)݂(∗ܻ − ஶିஶݖ݀(ଶݔ ൱ ൬ܬ − ܥ + ௗ2ܥ ൰
+ ൭ ݖߪ)݃ + ݖ)݂(∗ܻ − ଵݔ)ܨ(ଶݔ + ஶିஶݖ݀(ݖ  ݖߪ)݃ + ݖ)݂(∗ܻ − ஶିஶݖ݀(ଶݔ ൱൭ܬߙ  ݖߪ)݃ + ݖ)݂(∗ܻ − ଵݔ)ܨ(ଶݔ + ஶݖ݀(ݖ ݖߪ)݃ + ݖ)݂(∗ܻ − ଵݔ)ܨ(ଶݔ + −ஶିஶݖ݀(ݖ ൱ܥ = 0 
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ܺଶ(ߪ, ,ଵݔ (ଶݔ = ൭ ݖߪ)݃ + ݖ)݂(∗ܻ + ଶݔ)ܨ(ଵݔ − ஶିஶݖ݀(ݖ  ݖߪ)݃ + ݖ)݂(∗ܻ + ஶିஶݖ݀(ଵݔ ൱ ൬ܬ − ܥ + ௗ2ܥ ൰
+ ൭ ݖߪ)݃ + ݖ)݂(∗ܻ + ݖ)ܨ(ଵݔ − ஶିஶݖ݀(ଶݔ  ݖߪ)݃ + ݖ)݂(∗ܻ + ஶିஶݖ݀(ଵݔ ൱൭ܬߙ  ݖߪ)݃ + ݖ)݂(∗ܻ + ݖ)ܨ(ଵݔ − ஶݖ݀(ଶݔ ݖߪ)݃ + ݖ)݂(∗ܻ + ݖ)ܨ(ଵݔ − −ஶିஶݖ݀(ଶݔ ൱ܥ = 0 

Then ߪ)ܭ, ,ଵݔ (ଶݔ = ൫ ଵܺ(ߪ, ,ଵݔ ,(ଶݔ ܺଶ(ߪ, ,ଵݔ  ଶࡾ ଷ toࡾ ଶ)൯ is a continuously differentiable function fromݔ
such that 0)ܭ, ,ߛ (ߛ = (0,0). Then by the Implicit Function Theorem,11 as long as the Jacobian matrix is 
invertible at ߪ = 0, there is a small neighborhood around ߪ = 012 for which we can find a unique ቀߛ(ߪ), ܭ such that ߪ ቁ for each(ߪ)ௗߛ ቀߪ, ,(ߪ)ߛ ቁ(ߪ)ௗߛ = (0,0) and limఙ→శ (ߪ)ߛ = ߛ =limఙ→శ ߪ Thus, we need only check that the Jabobian matrix is invertible at .(ߪ)ௗߛ = 0. Looking at the 
equation, we see that ଵܺ(ߪ, ,ଵݔ (ଶݔ = ܺଶ(ݔ−,ߪଶ,  ଵ) and the determinant cannot be identically zeroݔ−

since ቀడభ(,௫భ,௫మ)డ௫భ ቁ ቀడమ(,௫భ,௫మ)డ௫మ ቁ ≠ ቀడభ(,௫భ,௫మ)డ௫మ ቁ ቀడమ(,௫భ,௫మ)డ௫భ ቁ. The left-hand side has terms involving 

mostly ݂(ݔ)’s while the right-hand side has terms involving (ݔ)ܨ’s and ݂′(ݔ)’s. Calculation using 
Mathematica confirmed that the Jacobian was indeed not zero when working with normal distributions. 
Hence, the proposition is proved. 

Similar logic can be applied to show that when ߙ ≠ 1 but close to 1, for a suitable ܲ value, there 
will continue to exist a similar equilibrium in which they settle at 0 for ݑ and ݒ far less than 0, settle at ܬ൫ߙ + ߙ) − ൯(ߙ)ܲ(1 + ௗܥ −  far greater than 0, and seek to litigate when the signals are ݒ and ݑ  forܥ
sufficiently closer to 0. Notice this equilibrium settlement values equal the first equilibrium when ߙ = 1. 
Because under the set-up, the two strategies converge to a pair of points symmetric around 0, in this case 
even with asymmetric stakes, the Fifty-Percent Limit Hypothesis will go through. Meanwhile, since the 
region of integration in the limit is ܥ ଵܵ(ݑ, (ݒ = ,ݑ)} ݑ|(ݒ ≥ ,ߛ− ݒ ≤  which is symmetric around the ,{ߛ
line ݒ = ߙ even for ,ݑ− ≠ 1, the limit value will be fifty-percent even for such ߙ ≠ 1. Thus, the 
Asymmetric Stakes Hypothesis will be false. Q.E.D. 

 
PROPOSITION A1: EXISTENCE OF ASYMMETRIC TWO-STEP LIMIT EQUILIBRIA. Given ߙ ∈ (1 ,ߝ− 1 +  such that the symmetric 2-step limit equilibrium exists from Proposition 2, there (generally) (ܬ/ܥ

exists a family of 2-step limit equilibria (which contains the identified symmetric limit equilibrium) in 
which the plaintiff and the employ a 2-step strategy of converging at either 0 or at ߙ)ܬ + ߙ) − ((ߙ)ܲ(1 ܥ− + ௗܥ ± ߬ where ߬ is sufficiently small. All other limit equilibria in this family, however, are 
asymmetric in the limit. 

 
PROOF OF PROPOSITION A1. By the reasoning of the proof of Proposition 2, it suffices to show the 

result for ߙ = 1. Given the limit equilibrium from Proposition 2, there exists a family of limit equilibria 
that converge around 0 and ߙ)ܬ + ߙ) − ((ߙ)ܲ(1 − ܥ + ௗܥ ± τ where τ is sufficiently small. Let 

                                                            
11 We thank Ken Alexander for suggesting the use of the Implicit Function Theorem to complete this 

argument. 
12 Although in this model, ߪ, as standard deviation, is necessarily positive, both ଵܺ(ߪ, ,ଵݔ ,ߪ)ଶ) and ܺଶݔ ,ଵݔ ,ߪ ଶ), simply as mathematical functions in three variablesݔ ߪ around ߪ ଶ, are continuous inݔ ଵ, andݔ = 0 

and well-defined for ߪ < 0 as well.  
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ଵܻ(ܪ, ,ଵݔ (ଶݔ = ቆන ݖ)݂ − ଵݔ−)ܨ(ଶݔ − ஶݖ݀(ݖ
ିஶ ቇ ൬2ܪ൰+ ቆන ݖ)݂ − ଵݔ)ܨ(ଶݔ + ஶݖ݀(ݖ

ିஶ ቇ൭ܬߙ  ݖ)݂ − ଵݔ)ܨ(ଶݔ + ஶݖ݀(ݖ ݖ)݂ − ଵݔ)ܨ(ଶݔ + ஶିஶݖ݀(ݖ − ൱ܥ = 0 

 

ଶܻ(ܪ, ,ଵݔ (ଶݔ = ቆන ݖ)݂ + ଶݔ)ܨ(ଵݔ − ஶݖ݀(ݖ
ିஶ ቇ ൬2ܪ൰+ ቆන ݖ)݂ + ݖ)ܨ(ଵݔ − ஶݖ݀(ଶݔ

ିஶ ቇ൭ܬߙ  ݖ)݂ + ݖ)ܨ(ଵݔ − ஶݖ݀(ଶݔ ݖ)݂ + ݖ)ܨ(ଵݔ − ஶିஶݖ݀(ଶݔ − ൱ܥ = 0 

Then ܪ)ܯ, ,ଵݔ (ଶݔ = ൫ ଵܻ(ܪ, ,ଵݔ ,(ଶݔ ଶܻ(ܪ, ,ଵݔ ߙ)ܬ	൫ܭ ଶ such thatࡾ ଷ toࡾ ଶ)൯ is a continuously differentiable function fromݔ + ߙ) − ((ߙ)ܲ(1 − ܥ + ,ௗܥ ,ߛ ൯ߛ = (0,0) and the function is defined for all values 
of ܪ. Then by the Implicit Function Theorem, as long as the Jacobian matrix is invertible at ܪ = ߙ)ܬ	 ߙ)+ − ((ߙ)ܲ(1 − ܥ + ܪ ௗ, there is a small neighborhood aroundܥ = ߙ)ܬ	 + ߙ) − ((ߙ)ܲ(1 − ܥ +  ௗ forܥ

which we can find a unique ቀߛ(ܪ), ,ܪቀܯ such that ܪ ቁ for each(ܪ)ௗߛ ,(ܪ)ߛ ቁ(ܪ)ௗߛ = (0,0) and limு→	(ఈା(ఈିଵ)(ఈ))ିା ߙ)ܬ	൫ߛ + ߙ) − ((ߙ)ܲ(1 − ܥ + ௗ൯ܥ = ߛ =limு→	(ఈା(ఈିଵ)(ఈ))ିା ߙ)ܬ	ௗ൫ߛ + ߙ) − ((ߙ)ܲ(1 − ܥ +  ௗ൯. Thus, we need only check that theܥ

Jabobian matrix is invertible at ܪ = ߙ)ܬ	 + ߙ) − ((ߙ)ܲ(1 − ܥ + ௗܥ . Looking at the equation, we see 
that ଵܻ(ܪ, ,ଵݔ (ଶݔ = ଶܻ(ݔ−,ܪଶ, ଵ) and the determinant, once again, is not identically zero since ቀడభ(ு,௫భ,௫మ)డ௫భݔ− ቁ ቀడమ(ு,௫భ,௫మ)డ௫మ ቁቚுୀ(ఈା(ఈିଵ)(ఈ))ିା ≠ ቀడభ(ு,௫భ,௫మ)డ௫మ ቁ ቀడమ(ு,௫భ,௫మ)డ௫భ ቁቚுୀ(ఈା(ఈିଵ)(ఈ))ିା . 

As before, the left-hand side has terms involving mostly ݂(ݔ)’s while the right-hand side has terms 
involving (ݔ)ܨ’s and ݂′(ݔ)’s. Hence, for each ܪ near ߙ)ܬ + ߙ) − ((ߙ)ܲ(1 − ܥ +  ௗ, we can find aܥ

suitable ቀߛ(ܪ), ,ܪFinally, for each such triple, ቀ	ቁ.(ܪ)ௗߛ ,(ܪ)ߛ  ߪ ቁ, we can increase(ܪ)ௗߛ

infinitesimally as well, as in Proposition 2. Q.E.D. 
 

PROPOSITION A2: EXISTENCE OF OBSTINATE LIMIT EQUILIBRIA. For each ∈ ቀ , 1 + ቁ , there 

exist an infinite number of obstinate plaintiff and obstinate defendant limit equilibria. Specifically, 
suppose ݃(ܻᇱ) is bounded above everywhere and locally continuous and nonzero at ܻ∗ and ߳ and ߳ௗ are 
distributed with mean zero according to ఙ݂,ఙ൫߳, ߳ௗ൯ = ఙ݂൫߳൯ ఙ݂൫߳൯ such that ݂(ݔ) = ఙ݂(ݔߪ) with full 
support over ܴଶ and ݂(ݔ) is symmetric around 0 and is continuously differentiable. Then for ߙ ∈ቀ , 1 + ቁ, where ܥ = ܥ +  :ௗ, the following two classes of continuous families of Nash equilibria existܥ

(i) the “obstinate plaintiff” equilibrium under which,  ൫ ܻ; ൯ߪ = ܬߙ}	where max ߪ  for all ܻ andݏ ,ܥ− {ௗܥ < ݏ < ܬ + )݀ ௗ, andܥ ௗܻ; (ߪ =  for ௗܻܥ− < ௗܻ∗(ݏ; )݀ and (ߪ ௗܻ; (ߪ =  for ௗܻݏ ≥ ௗܻ∗(ݏ;  (ߪ
for some ௗܻ∗(ݏ; (ߪ ∈ )݀	,and (ii) the “obstinate defendant” equilibrium under which ;ࡾ ௗܻ; (ߪ =  ௗ forݏ
all ܻ and ߪ where 0 < ௗݏ < min	{ܬߙ − ,ܥ ൫ ௗ}, andܥ ܻ; ൯ߪ = ௗ for  ܻݏ < ܻ∗(ݏ; ൫ and (ߪ ܻ; ൯ߪ ܬ= + ௗ for ܻܥ ≥ ܻ∗(ݏ; ;ݏ)∗for some ܻ (ߪ (ߪ ∈ ൫ ,For each family .ࡾ ܻ; )݀ ൯andߪ ௗܻ;  are (ߪ

continuous in ߪ, and ቀ൫ ܻ; 0൯, ݀( ௗܻ; 0)ቁ is a limit equilibrium. Furthermore, the plaintiff trial win rate 

is 0 for the obstinate plaintiff equilibrium and 1 for the obstinate defendant equilibrium. 
 
PROOF OF PROPOSITION A2. Consider the first pair of strategies. ൫ ܻ; ൯ߪ =  ߪ  for all ܻandݏ

where max	{ܬߙ − ,ܥ {ௗܥ < ݏ < ܬ + )݀ ௗ, andܥ ௗܻ; (ߪ =  for ௗܻܥ− < ௗܻ∗(ݏ; )݀ and  (ߪ ௗܻ; (ߪ =  for ௗܻݏ ≥ ௗܻ∗(ݏ; ;ݏ)∗for some ௗܻ (ߪ (ߪ ∈ ;ݏ)∗Notice first that if there exists ௗܻ .ࡾ (ߪ ∈  such that at ࡾ
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observing such value as his estimate of the case merit, the defendant is indifferent between playing −ܥ 
or ݏ, then the defendant will strictly prefer to play ݏ to −ܥ for all ௗܻ > ௗܻ∗(ݏ;  and will likewise  (ߪ
strictly prefer to play −ܥ over ݏ for all ௗܻ < ௗܻ∗(ݏ;  ݏ Second, the defendant’s strategy of playing .(ߪ
dominates playing any value above ݏ since the plaintiff is never asking more than this amount and the 
defendant in that case has no desire to settle for any value higher than ݏ. Third, if the defendant is not 
playing any value lower than ݏ, he is indifferent between playing that value or −ܥ, since litigation is 
sure to ensue. Therefore, given the plaintiff’s strategy, if there exists a point of indifference ௗܻ∗(ݏ;  ,(ߪ
then the defendant’s strategy is a best-response. Existence of ௗܻ∗(ݏ;  can be seen as follows. Consider (ߪ
the following equation:  

 ܲ(ܻᇱ ≥ ܻ∗| ௗܻ = ܬ(ݔ + ௗܥ = ݏ < ܬ	 +  ௗܥ
 
Regardless of ߪ, as ݔ goes from negative infinity to positive infinity, ܲ(ܻᇱ ≥ ܻ∗| ௗܻ =  will go from 0 (ݔ
to 1 and there must therefore be a unique ݔ value at which the equality will hold. We can let ௗܻ∗(ݏ;  be (ߪ
that value. Now, we need to prove that the plaintiff’s strategy is also a best response to the defendant’s 
strategy. Notice that playing ݏ dominates playing any value higher, since the plaintiff can never settle for 
any amount higher than ݏ (given the defendant’s strategy), and the plaintiff’s litigation value is 
maximized at  ܬߙ −  ,ݏ . But if the plaintiff were to play any value lower thanݏ , which is lower thanܥ
his chance of litigating remains the same (as if he were to play ݏ) but his settlement value, where feasible, 
will be reduced to the average of his value and ݏ. Therefore, the plaintiff’s best response is to always 
play ݏ. Since ܲ(ܻᇱ ≥ ܻ∗| ௗܻ = ܬ(ݔ +  we therefore have a continuous family of ,ߪ ௗ is continuous inܥ
Nash equilibria.  

Furthermore, if we make a change of variables, we can rewrite the condition as follows: ܲ(ܻᇱ ≥ ݒ|∗ܻ = (′ݒ =  ݖߪ)݃ + ݖ)݂(∗ܻ − ஶݖ݀(′ݒ ݖߪ)݃ + ݖ)݂(∗ܻ − ஶିஶݖ݀(′ݒ  

where ܻᇱ = ݔߪ + ܻ∗ . Then as ߪ goes to zero, ܲ(ܻᇱ ≥ ݒ|∗ܻ =  approaches (′ݒ ݖ)݂ − ஶݖ݀(′ݒ , which can 
take on any value between 0 and 1 depending on ݒ′. Therefore, the corresponding ݒ′ that satisfies ܲ(ܻᇱ ≥ ݒ|∗ܻ = ܬ(′ݒ + ௗܥ =   will be uniquely determined, and this pair of strategies will be anݏ

equilibrium for the ߪ-game in the limit. Since 
 (ఙ௭ା∗)(௭ି௩ᇱ)ௗ௭ಮబ (ఙ௭ା∗)(௭ି௩ᇱ)ௗ௭ಮషಮ  is continuous in ߪ and for each ߪ, ௗܻ∗(ݏ;  value determined uniquely, this equilibrium will be a limit of a continuous family of Nash (ߪ

equilibria. It is easy to see that the plaintiff trial win rate in the limit will be 0 in this case, because the 
region of integration is defined as the area to the left of a vertical line in the ݒݑ-plane. A similar argument 
shows that there is a class of limit equilibria in which the defendant remains obstinate, and the rest 
follows. Q.E.D.  
 

PROOF OF FIRST PART OF PROPOSITION 3.  For 
ିௌ < ߙ < 1 + ିௌ , ܴఈ(ݑ,  is properly (ݒ

contained by a translated fourth quadrant in the ݒݑ –plane (with the origin at (ܨିଵ ቀିௌఈ ቁ , ߙ)ௗିଵܨ −ିௌ ݒ affects the slope of the graph ߚ .(( =  ,increases ߚ As  .ݒ along which to take the integral over ߚ/ݑ

plaintiff is comparatively more accurate in assessing the merit of the case than the defendant.  But as ߚ 
increases, the slope of the line decreases and the portion of the graph ݒ =  in the first quadrant gets ߚ/ݑ
closer to ܴఈ(ݑ, ,ݑ)and the portion in the fourth quadrant gets farther away from ܴఈ (ݒ  Thus, the  .(ݒ
plaintiff trial win rate increases. As ߚ approaches infinity, the line ݒ =  axis–ݑ will approximate the ߚ/ݑ

and will become parallel to the horizontal asymptote for ܴఈ(ݑ, ߙ If  .(ݒ − ିௌ ≥ ଵଶ, then this line will 
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eventually be contained in ܴఈ(ݑ,  and hence ,ݑ for sufficiently large (ݒ ܲఈ,ଵ,ఉ(ݖ; ஶݖ݀(0  will be infinite.  

Even if the line will not be contained in ܴఈ(ݑ, ߙ such as when ,(ݒ − ିௌ < ଵଶ, the ݑ –axis will be parallel 

to the asymptote, and ఈܲ,ଵ,ஶ(ݖ; 0) converges a finite value other than zero as ݖ approaches infinity.  As ݖ 

approaches negative infinity, however, ఈܲ,ଵ,ஶ(ݖ; 0) wil approach zero at a rate at least as fast as inverse 

quadratic.  And thus, the plaintiff trial win rate will approach 1.  Similarly, as ߚ approaches 0, plaintiff’s 

win rate will approach zero. As discussed in Lee and Klerman (2015)’s Proposition 1, if ߙ > 1 + ିௌ , the 

plaintiff trial win rate is one, so it does not vary with ߚ. Likewise, when ߙ ≤ ିௌ , all cases settle, so the 

plaintiff trial win rate is undefined. Finally, if ߙ = 1 + ିௌ , the general logic as above goes through, 

except the path of integration may already be eventually contained in the region of integration since the 
region of integration will have no horizontal asymptote. The boundary will be increasing along ݑ. So even 
for finite ߚ values, the limit may already become 1. Q.E.D. 
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