Is Intellectual Property Trivial?

Jonathan M. Barnett*
Is Intellectual Property Trivial?

Jonathan M. Barnett

Abstract

We typically assume that intellectual property makes a substantial difference in regulating access to intellectual goods and thereby provides incentives for the production of intellectual goods. But the existence of alternative instruments by which to appropriate innovation returns suggests that even substantial changes in intellectual property may often make little difference in regulating access, which in turn means that those changes may often make little difference in regulating innovation incentives. This raises a conundrum: in markets where “more or less IP” exerts no substantial effect on access costs and innovation gains, why do firms expend resources on influencing changes in intellectual property? The answer lies in the distribution across firms of the costs of substitution toward alternative appropriation instruments. Changes in intellectual property still exert nontrivial incentive/access effects so long as the relative costs of using alternative instruments are not equally distributed across firms. Where that is the case, changes in intellectual property can be decisive—but not, as is conventionally assumed, with respect to the total gains available as a result of the appropriation capacities provided by legal instruments, but with respect to the distribution of those gains among firms that exploit the appropriation capacities provided by a portfolio of legal and extralegal instruments. If alternative instruments are not available to all firms at comparable cost, then relaxations of intellectual property will shift gains to firms that have the lowest-cost access to alternative instruments and away from firms that have the highest-cost access to alternative instruments. The typical abundance of alternative instruments among incumbents and the typical paucity of such instruments among entrants in turn implies (contrary to conventional intuitions) that the distributive effects of relaxing intellectual property may often be “regressive” and the distributive effects of strengthening intellectual property may often be “progressive”. The conventional incentive thesis for intellectual property may therefore retain a significant scope of application, but for an unconventional reason: it induces innovation by firms that would otherwise be disadvantaged by
incumbents’ cost advantage in capturing innovation returns through instruments other than intellectual property.
We typically assume that intellectual property makes a substantial difference in regulating access to intellectual goods and thereby provides incentives for the production of intellectual goods. But the existence of alternative instruments by which to appropriate innovation returns suggests that even substantial changes in intellectual property may often make little difference in regulating access, which in turn means that those changes may often make little difference in regulating innovation incentives. This raises a conundrum: in markets where “more or less IP” exerts no substantial effect on access costs and innovation gains, why do firms expend resources on influencing changes in intellectual property? The answer lies in the distribution across firms of the costs of substitution toward alternative appropriation instruments. Changes in intellectual property still exert nontrivial incentive/access effects so long as the relative costs of using alternative instruments are not equally distributed across firms. Where that is the case, changes in intellectual property can be decisive—but not, as is conventionally assumed, with respect to the total gains available as a result of the appropriation capacities provided by legal instruments, but with respect to the distribution of those gains among firms that exploit the appropriation capacities provided by a portfolio of legal and extralegal instruments. If alternative instruments are not available to all firms at comparable cost, then relaxations of intellectual property will shift gains to firms that have the lowest-cost access to alternative instruments and away from firms that have the highest-cost access to alternative instruments. The typical abundance of alternative instruments among incumbents and the typical paucity of such instruments among entrants in turn implies (contrary to conventional intuitions) that the distributive effects of relaxing intellectual property may often be “regressive” and the distributive effects of strengthening intellectual property may often be “progressive”. The conventional incentive thesis for intellectual property may therefore retain a significant scope of application, but for an unconventional reason: it induces innovation by firms that would otherwise be disadvantaged by incumbents’ cost advantage in capturing innovation returns through instruments other than intellectual property.

1 Assoc., Prof., University of Southern California, Gould School of Law. I am grateful for helpful comments from participants in the Symposium on Foundations of Intellectual Property Reform, held at the University of Pennsylvania School of Law. All errors are mine.
Policy, scholarly and popular discussions of the socially desirable level of protection provided by intellectual-property rights typically take it for granted that changes in the level of intellectual property protection matter a lot. Whether patent claims are broadly or narrowly interpreted, the copyright term is longer or shorter, the fair use exemption is applied more or less generously, are commonly assumed to make a substantial difference in regulating access to intellectual goods. This follows what would appear to be an uncontroversial proposition set forth in any standard introduction to intellectual property law: patents, copyrights and other entitlements determine which technologies and creative works fall into the private domain to which access is constrained and which remain in the public domain to which access is unfettered. In this Article, I show that this proposition should be controversial. It is not clear that changes—even substantial changes—in intellectual property typically make any meaningful difference in regulating access to the underlying pool of intellectual goods, which in turn means that those changes do not clearly make any meaningful difference in regulating the anticipated profits that drive innovation incentives. Contrary to natural intuitions, the size of the public domain\(^2\) may be substantially invariant to changes in intellectual-property coverage. This qualified indifference thesis is founded in a well-established empirical observation: firms generally can—and do—exploit devices other than intellectual property by which to limit access to, and thereby appropriate returns from, innovation investments. Hence, intellectual goods that are unprotected by intellectual property may still be protected directly or indirectly by other legal or extralegal mechanisms, which broadly includes technology, contract, transactional design, organizational form and a variety of complementary assets. If these alternative instruments can replace substantially the appropriation capacities provided by intellectual property rights, then legal changes that constrain those rights and thereby ostensibly expand the public domain have no substantial net effect; conversely, if these alternative instruments can match or exceed the appropriation capacities provided by intellectual property rights, then legal changes that expand those rights and thereby ostensibly narrow

\(^2\) There are a variety of definitions of the public domain in the scholarly literature. In this Article, I understand it in the broadest practical sense as referring to technologies and creative works that are freely accessible by third parties without the holder’s consent, whether as a matter of law, technology or otherwise.
the public domain have no substantial net effect. This proposition is self-evidently true in
the extreme case where perfect technological locks can be implemented at zero cost:
contractions or expansions in intellectual-property coverage have no marginal effect on
the access costs incurred by third parties and, as a consequence, the innovation gains
anticipated by resource holders. In a broader class of intermediate settings, this
proposition retains descriptive force to the extent firms can exploit alternative
instruments substantially to reproduce or even surpass the appropriation capacities
provided by intellectual property.

If there is reason to doubt that nontrivial changes in intellectual-property coverage
always yield nontrivial effects on access to intellectual goods, then there must be reason
to doubt the “incentives/access” tradeoff that is the familiar foundation for normative
discussions over the desirable scope of intellectual property. This tradeoff assumes that
more intellectual property generates social harm by reducing access to intellectual goods
but generates social benefits by enhancing anticipated profits and thereby enhancing
innovation incentives; and conversely, less intellectual property generates social benefits
by expanding access to intellectual goods but generates social harm by reducing
anticipated profits and thereby reducing innovation incentives. Hence, the policy
challenge lies in setting intellectual-property coverage so as always to yield a net social
gain. But the zero-sum tradeoff that drives this policy calculus does not hold universally,
or even typically, as soon as we drop or relax the unstated but critical assumption that
firms cannot use substantially cost-equivalent exclusionary devices. Without that
assumption, the incentives/access tradeoff is no longer a safe bet. There can be no
assurance that (i) nontrivial contractions in entitlement strength will nontrivially reduce
the costs of accessing intellectual goods and thereby decrease innovators’ anticipated
rewards and investment incentives or (ii) nontrivial expansions in entitlement strength
will nontrivially increase the costs of accessing intellectual goods and thereby increase
innovators’ anticipated rewards and investment incentives. Any reduction in intellectual-
property coverage will have trivial effects if it simply induces firms to migrate to the
next-least-costly alternative instrument by which to maintain reasonably equivalent
appropriation capacities; and any expansion of intellectual-property coverage will have
trivial effects if firms already make use of alternative instruments that deliver equivalent or greater appropriation capacities at a comparable or lower cost.

This line of argument immediately raises a conundrum: if “more or less IP” exerts no substantial effect on access costs and innovation gains over some meaningful range of circumstances, then why do profit-maximizing firms expend resources on influencing changes in intellectual-property coverage? Working out this conundrum yields a nuanced thesis that identifies more precisely the circumstances under which changes in intellectual-property coverage do and do not matter. Even in a world of substantially cost-equivalent appropriation instruments, intellectual-property coverage still makes a difference so long as we make the reasonable assumption that alternative instruments—or more precisely, the relative costs of using those instruments—are not equally distributed among all existing and potential participants in the relevant market. Where that assumption is satisfied, any change in entitlement strength does have nontrivial effects—not, as is conventionally assumed, on the total gains available as a result of the appropriation capacities provided by legal instruments, but on the distribution of those gains among firms that exploit the appropriation capacities provided by a portfolio of legal and extralegal instruments. Even if more or less intellectual property makes no difference “on the margin” so long as the market generally can use substitute instruments to cover shortfalls in intellectual-property coverage, it makes considerable difference “on the margin” so long as each individual firm incurs non-identical costs in migrating to those substitute instruments. If alternative instruments are not available at reasonably comparable cost to all actual and potential participants in the relevant market, then relaxations of intellectual-property coverage will shift gains to firms that have the lowest-cost access to alternative instruments and away from firms that have the highest-cost access to alternative instruments. Hence, even if intellectual property has trivial effects as an incentive instrument with respect to the market as a whole, every individual firm rationally invests resources in influencing intellectual-property coverage. Everything else being equal, increasing coverage will shift rents away from firms with lower-cost appropriation technologies (who should lobby against “excessive” intellectual property) while reducing coverage will shift rents toward firms with higher-cost appropriation technologies (who should lobby for “critical” intellectual property).
If we recognize the typical availability of substantially cost-equivalent alternative instruments, then intellectual property is trivial with respect to the total rents generated by innovation investment; if we recognize that alternative instruments are typically distributed unequally across firm types, then intellectual property is nontrivial with respect to the distribution of rents in the relevant market. Surprisingly, the typical abundance of alternative instruments among incumbents and the typical paucity of such instruments among entrants imply that the distributive effects of relaxing intellectual property may often be “regressive” and the distributive effects of increasing intellectual property may often be “progressive”. Commentators usually assume that distributive effects run in precisely the contrary direction: stronger intellectual-property coverage presumably increases the entry costs incurred by small-firm entrants and therefore increases the pricing power exercised by large-firm incumbents, which in turn punishes end-users. But if (i) intellectual property typically has a differential nontrivial impact on firms that incur the highest cost in accessing alternative instruments and (ii) large firms have the lowest-cost access to alternative instruments, the relationship may be reversed. Weaker legal protections exacerbate large firms’ inherent appropriation-cost advantage over small firms, which in turn implies that incumbents’ market share is more securely protected under less, not more, intellectual property coverage, which in turn enhances pricing power and punishes end-users. Conversely, stronger intellectual-property protections mitigate large firms’ inherent cost advantage in appropriating innovation rents, which in turn implies that large firms’ market share is less securely protected under more, not less, intellectual property coverage, which in turn constrains pricing power and benefits end-users. Contrary to the typical view that “strong IP” favors entrenched large firms while “weak IP” favors small-firm entrants, “weak IP” will often protect incumbents against entrants while “strong IP” will often protect entrants against incumbents.

To summarize: intellectual property typically has trivial incentive effects but nontrivial (and often progressive) distributive effects. But do these “progressive” distributive effects matter from a social point of view? Venture capitalists and garage inventors are not the standard candidates for distributive equity. Curiously, a refined understanding of intellectual property as a distributive instrument may breathe new life
into the familiar, but empirically-challenged, rationale for intellectual property as an incentive instrument. If we understand intellectual property as primarily a distributive instrument that shifts innovation rents away from incumbents characterized by high levels of integration and toward entrants or other entities characterized by low levels of integration, then intellectual property may matter as an incentive instrument that operates primarily and indirectly at the “macro” level of industrial organization. In particular, if intellectual property supports the economic viability of stand-alone transactional structures that exhibit weak appropriation capacities, it may facilitate certain kinds of innovation investment to which such structures are commonly thought to be well-suited, even if it has little effect on the total volume of innovative investment. While further inquiry is certainly required, it can be conservatively stated that there is some limited evidence (and widespread belief in the business world) that small firms and variants thereof (in the business vernacular: start-ups, spin-offs, etc.) exhibit unique innovative competencies in some industries at certain stages of the innovation life cycle. Assuming that this view is more systematically confirmed, then the conventional thesis that “IP matters” as an incentive device may turn out to retain a significant scope of application, but for an unconventional reason: namely, it induces innovative output by firms that would otherwise be disadvantaged by the inherent cost-advantage of large firms in capturing innovation returns through instruments other than intellectual property. Following this hypothesis, the distributive effects and incentive effects of intellectual property would nicely coincide: intellectual property makes the greatest difference in correcting distributional inequalities in appropriation costs in the same markets where it makes the greatest difference in eliciting innovative output from small-firm entrants and other weakly-integrated entities.

Discussion proceeds as follows. In Part I, I review the incentives/access tradeoff and the related assumptions that lie behind it, describe empirical evidence that challenges those assumptions, and then re-formulate the limited conditions under which intellectual-property coverage will matter as an incentive instrument. In Part II, I identify the broader conditions under which intellectual property will matter as a distributive instrument for allocating innovation rents across firm types. In Part III, I explore how the distributive
function of intellectual property may indirectly yield incentive effects by supporting innovation investment by small firms and other weakly-integrated entities.

Part I. Why Intellectual Property Is and Is Not Trivial

In this Part, I proceed as follows. First, I draw out the assumptions behind the conventional view that intellectual property is always nontrivial, which in turn supports the view that the incentives/access tradeoff always governs the choice between stronger or weaker levels of intellectual-property protection. Second, I review empirical evidence that challenges those assumptions. Third, I identify a generic set of circumstances where intellectual property does and does not matter as an incentive instrument, taking into account firms’ capacities to shield innovation rents through mechanisms other than intellectual property.

A. Why Intellectual Property Is Nontrivial (Always)

Conventional discussions of intellectual property rest on a few common and interrelated propositions, which are usually left unstated in discussions that are otherwise dependent on those propositions being true in all or most cases. These assumptions are as follows:

Conventional Proposition I: Less intellectual property increases the size of the public domain; more intellectual property decreases it. This proposition would seem to follow self-evidently from the fact that intellectual property increases the cost of using otherwise freely-accessible intellectual resources. This in turn motivates widespread opposition to “enclosure” of the public domain by stronger forms of intellectual property, and widespread advocacy for weaker forms of intellectual property to “free the commons”. Considered more closely, however, this proposition necessarily assumes that there exist no other instruments by which holders of intellectual resources can

implement substantially-equivalent access restrictions at some substantially-equivalent cost. Hence, it is more precise to say that increasing or decreasing the strength of intellectual property decreases or increases the size of the public domain, respectively, assuming the unavailability of other instruments by which resource holders can restrict access to substantially the same extent at substantially the same cost. Where that assumption is not satisfied, the market simply fills any appropriability deficit caused by the contraction of any state-provided property entitlement, and conversely, the state simply mimics any market-provided appropriation capacities when it expands any intellectual property entitlement. This is true (self-evidently!) in the extreme case where technological locks on intellectual resources perfectly constrain access at zero cost: whether the state reduces or adds intellectual property protections, this would have no incremental impact on the size of the public domain, which holds constant. Even in intermediate scenarios where alternative instruments imperfectly restrict access at some positive incremental cost, this observation retains considerable force: expansions or reductions in intellectual-property coverage will have a limited incremental effect on the size of the public domain to the extent that firms can exploit alternative instruments to achieve a similar level of coverage at some reasonably-equivalent cost.

Conventional Proposition II: Less intellectual property decreases innovation gains; more intellectual property increases innovation gains. Conventional Proposition II follows self-evidently from Conventional Proposition I. If intellectual property matters because it constrains access to the public domain, then it must also matter because expanding the resource holder’s exclusive territory increases the gains that it can expect to derive from a successful innovation, which obviously increases its innovation incentives. Hence, all else being equal, innovation incentives are stronger in a world with more complete intellectual property coverage relative to a world with less complete coverage. Like Conventional Proposition I, Conventional Proposition II necessarily assumes that there exist no other instruments by which resource holders can implement substantially-equivalent access restrictions at some substantially-equivalent cost. Hence, it is more precise to say that increasing or decreasing the strength of intellectual property increases or decreases innovation incentives, respectively, assuming the unavailability of
other instruments by which resource holders can restrict access to substantially the same extent at substantially the same cost. Again, that is self-evidently true in the extreme case where technological locks perfectly restrain access: abolishing or introducing even the strongest forms of intellectual property makes no difference if innovators can exploit substitute technologies at zero incremental cost. This proposition holds true in intermediate settings to the extent that resource holders can use some combination of alternative instruments to regulate access and thereby appropriate returns from innovation investments at some reasonably-equivalent cost.

Conventional Proposition III. Intellectual property always poses a zero-sum tradeoff between incentive gains and access costs. Taken together, Conventional Proposition I plus Conventional Proposition II yield Conventional Proposition III. Virtually all students learn, academic commentary repeats, and countless judicial opinions state that stronger or weaker intellectual property always involves an unavoidable tradeoff between increasing innovation incentives (and resulting innovation gains), which result from stronger intellectual property, and reducing access costs, which result from weaker intellectual property. This is equivalent to stating simply that entitlement strength correlates positively with innovation gains and access costs, which then defines the policymaker’s challenge as setting intellectual-property strength such that innovation gains always exceed access costs. Strictly speaking (and contrary to some common but imprecise formulations), the access costs generated by intellectual-property protections are confined to “deadweight losses” incurred whenever a buyer is willing to pay the marginal cost of an intellectual good but not the supracompetitive premium rationally demanded by its legally-exclusive holder. However, even an economically-driven intellectual-property regime would recognize that, even where a buyer is willing to pay the supracompetitive premium, distributive losses are incurred in the form of consumer surplus transferred from buyer to producer. These efficiency and distributive effects together drive the basic incentives/access tradeoff: marginal increases in intellectual property are socially desirable to the extent marginal incentive gains exceed

4 An important category of deadweight losses is also generated where efficient transactions are frustrated by legal, negotiation and other administrative costs attendant to an intellectual-property regime.
the associated bundle of marginal social costs; conversely, marginal decreases in intellectual property are socially desirable to the extent marginal reductions in the associated bundle of social losses exceed marginal incentive losses. However, if neither Conventional Proposition I nor Conventional Proposition II holds substantially, then the incentive gains and the access costs attributable to even substantial changes in intellectual-property coverage may often be nominal (or, as I show below, perverse), in which case the zero-sum incentives/access tradeoff is not a reliable framework for assessing proposed changes in intellectual property coverage.

B. Market Alternatives to Intellectual Property

The conventional proposition that “IP matters”, and the various assumptions that stand behind it, rest on a single (and usually, unstated) empirical predicate: namely, firms have no or limited access to cost-equivalent substitutes to intellectual property by which to regulate access to intellectual resources. Intellectual property must matter because it blemishes a pristine commons of intellectual goods free from restrictions on access. To the extent that predicate is not satisfied, each of these assumptions loses considerable force or scope of application, which in turn challenges the basic proposition that intellectual property generally makes a difference in regulating access costs and incentive gains. If firms can migrate to equivalent exclusionary instruments at no or little positive incremental cost, then providing more or less intellectual property will make no difference in regulating access (contra Conventional Proposition I), which means that it will make no difference in regulating incentives (contra Conventional Proposition II), which means that it does not involve any meaningful (or at least, any “directionally uniform”) tradeoff between innovation gains and access costs (contra Conventional Proposition III). A well-developed body of empirical evidence suggests that this required predicate is usually not substantially satisfied over a wide range of markets and industries, where firms typically use a combination of instruments other than intellectual property by which to substantially contain knowledge spillovers. Most strikingly, there exist economically-significant markets where firms make virtually no reliance on intellectual property in order to appropriate returns from innovation investment but do
rely on a host of other legal and extralegal instruments by which to regulate access. Consider perhaps most notably the worldwide market in financial and other data, which operates with great success virtually bereft of copyright or other intellectual property protections, for which firms appear to substitute by recourse to technological and contractual constraints. Hence, contrary to conventional intuitions, the pristine commons of an unregulated pool of intellectual resources may be a theoretical artifact that is rarely realized in practice. And that means policymakers rarely face a choice between intellectual property or no restrictions at all: rather, the real choice is between intellectual property and some mix of substitute instruments to which resource holders will necessarily make recourse in order to shield innovation returns.

Evidence for this claim is found most directly in multiple survey studies that use questionnaires (sent to managers at medium to large-size manufacturing firms) to assess the relative importance of patents as a device for appropriating revenues relative to all other available instruments. The results are remarkably consistent across time and industry: outside of the pharmaceuticals and chemicals industries, managers consistently rank patents among the least effective appropriation instruments and rarely respond affirmatively when asked if patent protection is a “but for” condition for undertaking a research project. The studies were conducted from the 1960s through the early 2000s,

7 See Mansfield, supra note 6 (finding that firm managers in all industries other than chemicals and pharmaceuticals believed that less than thirty percent of the inventions that firms developed during period studied would not have been developed without patent protection); TAYLOR & SILBERSTON, supra note 6 (finding that, in 24 out of 30 companies in sample set, managers believed that R&D investment was not, or was minimally dependent on, expected patent protection, and noting that companies that relied on patent protection were in the pharmaceuticals and chemicals sectors). See also Cohen et al., supra note 6 (finding...
and hence, presumptively rebut any meaningful correlation with contemporaneous changes in the perceived level of patent protection. The apparent lack of correlation between managers’ subjective ranking of the importance of patent protection and the legal strength of patent protection conforms nicely to other studies that have sought to identify in various contexts correlations between levels of R&D investment and changes in the legal strength of patent protection.8 Remarkably, no determinate relationship can be identified: that is, the aggregate investments made by firms in R&D (as distinguished from firms’ investments in patent prosecution and enforcement) do not appear to be affected—or stated most conservatively, do not seem to be systematically affected—by upward or downward adjustments in the effective strength of patent protection.

The aforementioned studies principally provide a ranking order of intellectual property relative to other appropriation instruments, where intellectual property tends to fall toward the bottom of the scale, and measures of the sensitivity of innovative output to intellectual-property coverage, which tends to be low. A large empirical literature developed by business-management scholars supplies an important complementary knowledge base by providing extensive detail on the diverse inventory of substitute devices by which firms can substantially regulate access. These alternative instruments can be usefully organized into four general categories, discussed briefly in turn below.9

8 Multiple studies have reached this type of result. See, e.g., Samuel Kortum & Josh Lerner, *Stronger Protection or Technological Revolution: What is Behind the Recent Surge in Patenting?* 8-9 (Nat’l Bureau of Econ. Research, Working Paper No. 6204) (1997) (finding that, since creation of the Federal Circuit, patenting rates have risen but measures of R&D intensity showed no significant change); Josh Lerner, *150 Years of Patent Protection*, 92 AMER. ECON. REV. PAPERS & PROCEEDINGS 221 (2002) (examining 177 policy changes in patent protection across 60 countries over a 150-year period and finding that changes have little effect on patenting rates by domestic entities but a meaningful effect on patenting by foreign entities). For a fuller review of the evidence, see James E. Bessen & Michael J. Meurer, *Do Patents Perform Like Property?*, ACAD. MGMT. PERSPECTIVES, Aug. 2008.

1. **Technology**

 The most obvious alternative to intellectual property is technology, which is used widely by resource holders to limit unauthorized access, especially to tacit knowledge without which it is often difficult to replicate a successful product. Technologies for regulating access can be understood broadly to include secrecy precautions that constrain leakage of valuable information, formal and informal nondisclosure practices that govern research and development, and any product configuration or manufacturing process that increases third parties’ replication costs. These can be surprisingly effective and long-lasting (consider the Coca-Cola formula): contrary to the conventional framework where imitators “rip off” an original technology at virtually no cost, empirical inquiries tend to find that competitors often incur substantial costs in replicating an existing product.\(^\text{10}\) In other industries, firms successfully use technology to condition access by end users to what is otherwise a legally-unprotected intellectual good: consider Bloomberg, the leader in the worldwide market for financial data (as noted above, largely unprotected under copyright law), which requires that users purchase product-specific “Bloomberg terminals” in order to use the firm’s database. Or, “closer to home” for a legal audience, consider the Westlaw or Lexis services for U.S. case law: while the immediate product is unprotected under copyright law\(^\text{11}\), the providers limit usage through technological measures that effectively constrain access subject to a pricing schedule. And as is well-known, in the software, online entertainment and consumer electronics sectors, firms make wide use of encryption, copy-protection and a variety of other “digital rights management” (“DRM”) technologies that can finely regulate user access based on pricing plans and various other criteria.

\(^\text{10}\) *See* Edwin J. Mansfield et al., *Imitation Costs and Patents: An Empirical Study*, 91 ECON. J. 907, 909-10 (1981) (based on interviews with firm managers in several industries, finding that imitation costs and time average about 65% of the costs incurred and 70% of the time required to develop the original product). Note that Mansfield et al. define “imitation costs and time” broadly to include both product development and all subsequent “bringing to market” costs. For another contribution where the same author finds that tacit knowledge slows down knowledge outflows to competitors, see Edwin J. Mansfield, *How Rapidly Does New Industrial Technology Leak Out?*, 34 J. IND. ECON. 217, 221 (1985).

\(^\text{11}\) This is supported, in increasing scope of application, by: case law, see *Wheaton v. Peters*, 33 U.S. (8 Pet.) 591 (1834) (no copyright protection for Supreme Court judicial opinions); (ii) statute, see 17 U.S.C. § 105 (no copyright protection for federal governmental works); and (iii) Copyright Office policy, see *COMPRENDIUM II: COPYRIGHT OFFICE PRACTICES* 305.08(d) (no copyright protection for federal or state government documents).
2. **Contract**

Firms widely use contractual instruments in order to impose limitations on the use of their products. Various examples can be cited. In the software industry, vendors attach “shrinkwrap” and “clickwrap” agreements to software purchased at retail or online venues, respectively, and bind the purchaser to terms that may exceed the rights to which the vendor is entitled under copyright or patent law. Even if copyright or patent protection were abolished, firms could still bind point-of-sale consumers and other directly-transacting parties through contractual restrictions. While the enforceability of these contracts is sometimes contested, the law seems fairly settled in most jurisdictions that these contracts are relatively immune to challenge so long as certain notice and other procedural requirements to satisfy judicial concerns over aggressive “fine print” tactics are met.12 In sophisticated licensing transactions involving patented technologies or copyrighted creative works, rights holders typically include a variety of provisions that limit usage of the licensed technologies to geographically or technologically defined “fields of use” or provide for “grant back” rights that require the licensee to share with the licensor any improvements it makes to the licensed technology. In the context of corporate research and product development, firms constrain the outflow of tacit and other human-embodied knowledge through contractual provisions that punish employees economically for departing a firm—most notably, non-compete provisions (admittedly, of dubious enforceability in some jurisdictions) or forced resale provisions (and other provisions of similar punitive effect) in employee stock option agreements. In all these contexts, contract provides an important instrument by which resource holders limit access, both by identified third parties with whom they enter into fully-negotiated business relationships and unidentified third parties with whom they transact anonymously in the retail context.

12 For the most aggressive decision upholding end-user licenses, see *ProCD, Inc. v. Zeidenberg*, 86 F.3d 1447 (7th Cir. 1996); for a more measured decision that advances a standard by which online contracts are enforceable provided certain context-specific procedural requirements are satisfied, see *Specht v. Netscape Communications*, 150 F.Supp.2d 585 (S.D.N.Y. 2001).
3. **Organization**

Firms can select among a wide variety of structures by which to organize the research and development, production, marketing and distribution functions that comprise any innovation process. Broadly speaking, these structures can be situated along a spectrum ranging from complete integration where all functions are performed in-house to zero integration where a disembodied firm contractually outsources all functions. Each of these structural choices provides firms with different appropriability capacities. As a general tendency, increased integration improves a firm’s ability to contain spillovers, where integration is understood to include both (i) vertical integration down the supply chain from production through distribution and (ii) horizontal integration across a portfolio of related products and services. Hollywood film studios have historically followed a horizontal integration strategy, which internalizes spillovers from successful releases by investing resources in the production of a wide variety of collateral merchandise and other derivative applications in a series of sequels and other adaptations. Pharmaceutical firms have historically followed a vertical integration strategy, which substantially internalizes spillovers by undertaking research, testing, production and marketing through in-house functions, thereby limiting any inadvertent outflows of proprietary knowledge. Intermediate options between full and zero integration include a wide variety of joint ventures, partnerships and strategic alliances, where firms integrate some functions while using contractual instruments and equity investments to implement other functions through arm’s-length or long-term cooperative relationships with other firms. These hybrid arrangements are typical in the biopharmaceutical industry, which relies on contract-based and equity-based partnerships between “upstream” suppliers of biotechnology innovations and “downstream” providers.

13 Note that I am using “horizontal integration” in a manner that departs somewhat from standard usage, where it usually refers to a firm’s acquisition of its direct competitors. The phenomenon described in the text above could alternatively be called a diversified or conglomerate form of organization.

14 On the diversified conglomerate structure that tends to characterize firms that dominate the film and media industries, see Richard E. Caves, Creative Industries: Contracts Between Art and Commerce 314, 318-24 (2000).

of capital-intensive production, marketing and distribution capacities.16 Through this wide variety of organizational structures, participating firms can finely regulate voluntary knowledge “between-flows” among co-venturers while limiting involuntary knowledge “outflows” to non-participants.

4. \textit{Complementary Assets}

Business history is littered with the remains of firms with brilliant ideas that never achieved substantial market penetration. It is well-established in the business management literature that the commercial success of a new technology is critically dependent on a firm’s ability to bundle its technology with “complementary assets” that facilitate securing market share against actual and potential competitors.17 Broadly speaking, these assets encompass: (i) \textit{economies of scope} in the form of complementary goods and services offered to the target consumer (including service and support functions); (ii) \textit{economies of scale} in the form of marketing, production and distribution efficiencies; and (iii) \textit{firm goodwill}.18 Properly speaking, complementary assets form part of the total product and services bundle that any competitor must replicate in order to deliver a reasonable economic substitute that can threaten the incumbent’s firm’s market position. Hence, any competitor in the consumer goods industry will face a powerful obstacle simply by virtue of the fact that the global leaders have access to an existing set of complementary assets in the form of goodwill, worldwide distribution and marketing networks, production infrastructure, and contractual and other relationships, all of which take years to accumulate and are not amenable to rapid imitation. Complementary assets are a powerful tool that can substantially raise third parties’ entry costs: hence, even in industries where the underlying technology enjoys little to no robust protection from intellectual-property entitlements, these inherent cost barriers mean that established firms

17 For the leading source, see David J. Teece, \textit{Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy}, 15 \textit{RESEARCH POL’Y} 285 (1986).

18 This list commonly includes “tacit knowledge”, which I have incorporated under the “technology” category discussed above.
can reasonably expect to have the capacity to defend innovation rents against smaller-firm entrants. And conversely, smaller-firm entrants can not reasonably expect to have substantial capacity to achieve the same outcome, which in turn reduces competitive threats and increases incumbents’ pricing power even in the absence of any formal instrument by which to frustrate entry. Empirical studies that examine some or all of these factors provide ample support for this view, showing that established incumbents historically exert a strong “first mover” advantage over subsequent entry threats.\(^{19}\)

C. Why Intellectual Property Is (Sometimes) Trivial

Intuitively we conceive of intellectual property as a legal instrument that uniquely imposes access restrictions on intellectual goods that are otherwise open to public use. But it is more precise to say that intellectual property sets a per-unit price for coverage against unauthorized usage, which in turn regulates the rate of substitution by firms between intellectual property and all other available mechanisms by which to regulate access to intellectual goods. This reformulated framework is grounded in the empirical observation that intellectual property rarely acts as firms’ unique source for imposing access restrictions on intellectual goods. Intellectual property is therefore only one member of any firm’s “portfolio” of appropriation instruments, each of which can be construed as offering “units of coverage” against unauthorized usage of intellectual goods at a certain constant per-unit cost.\(^{20}\) Each firm must then elect among expending resources on adopting and enforcing formally-available intellectual property rights and/or implementing some combination of alternative instruments to secure innovation returns. This is a variant on the economizing problem familiar from the transaction-cost

\(^{19}\) For a review of the literature, see William T. Robinson et al., *First-Mover Advantages from Pioneering New Markets: A Survey of Empirical Evidence*, 9 REV. IND. ORG. 1 (1994). I note that some commentators contest whether the first-mover advantage is sometimes overstated and others even identify a second-mover advantage whereby pioneering firms’ innovations are imitated by latecomers or existing incumbents. For various illustrations for this thesis, see Steven Schnaars, *Managing Imitation Strategies* (1994). There certainly seems to be merit to this alternative view in some meaningful set of markets; however, this does not erode the well-founded proposition that firms can sometimes rely substantially on the first-mover advantage to accrue returns on innovation investments.

\(^{20}\) Note that I assume throughout that (i) while the costs of coverage differ across instruments, the units of coverage are homogenous and (ii) there are no complementarities between appropriation instruments. It would be interesting to relax one or both of these assumptions in a more extended analysis.
18

economics literature21, whereby the firm selects governance structures so as to limit the costs of third-party opportunism; in this construct, the firm allocates resources within its appropriation portfolio so as to maximize coverage against (and thereby limit the costs of) third-party expropriation of intellectual resources.

Suppose that a firm has a fixed “appropriation budget” of resources dedicated to shielding innovation returns against third-party expropriation22. When legal changes reduce the strength of an intellectual property entitlement, the per-unit cost of obtaining coverage through intellectual property effectively rises, which then induces the firm to shift resources toward the next-least-cost alternative instrument in its portfolio so as to sustain its existing coverage to the maximum extent possible. When legal changes increase the strength of an intellectual property entitlement, the per-unit cost of coverage through intellectual property effectively falls, which then induces the firm to shift resources away from the next-least-costly instrument in its portfolio so as to maximize coverage. To illustrate this a bit more concretely, suppose that a new legal standard makes it more difficult to defend the nonobviousness of a patent claim (e.g., the Supreme Court’s 2007 decision in \textit{KSR International v. Teleflex, Inc.}23, which makes it easier to show nonobviousness): everything else being equal, firms will rationally divert resources from prosecution and enforcement of patents to alternative appropriation devices. Alternatively, suppose that a new legal standard makes it easier to defend the validity of a patent claim over non-technical subject matter (e.g., the Federal Circuit’s 1998 decision

\begin{itemize}
\item 21 For the seminal reference, see O\ LIVER E. WILLIAMSON, \textit{THE MECHANISMS OF GOVERNANCE} (1996).
\item 22 This fixed budget assumption is a simplification for expositional purposes, equivalent to supposing a firm that expends all of its resources on appropriation activities and cannot access external capital. This assumption would be relaxed in a more extended analysis that explicitly models the firm’s consumption choice as a function of the elasticity of the firm’s demand for coverage against unauthorized usage with respect to changes in the cost of obtaining coverage through available appropriation instruments. Note that, generally speaking, it can be expected that relaxing the fixed budget assumption would appear to make the indifference thesis (“IP doesn’t matter”) more robust with respect to downward adjustments in intellectual property (since firms could expand the appropriation budget to fully replicate withdrawn state-provided appropriation capacities) but less robust with respect to upward adjustments in intellectual property (since firms could expand the appropriation budget to exploit additional state-provided appropriation capacities). In subsequent discussion (see infra Part I.C.4), I show that certain applications of the indifference result hold even where this assumption is relaxed.
\item 23 550 U.S. 398 (2007)
\end{itemize}
in *State Street Bank & Trust Co. v. Signature Financial Group, Inc.*\(^{24}\), which lifted the case-law prohibition on business-method patents): everything else being equal, firms will rationally divert resources from alternative mechanisms to patents. So long as we assume a fixed appropriation budget and reasonably-equivalent alternative instruments, it logically follows that any firm’s appropriation capacities are substantially invariant to the level of intellectual-property protection.

Contrary to conventional expectations, “IP doesn’t *always* matter”: rather, it is *always* an empirical question subject to the difference in per-unit cost of coverage between the relevant intellectual property entitlement and the next-least-costly combination of substitute instruments. Let’s focus on the case where the state relaxes or even abolishes intellectual-property protections over the relevant set of intellectual resources.\(^{25}\) The market will not “sit still” in response to the withdrawal of intellectual-property coverage: firms will rationally divert the resources previously used to adopt and enforce the lapsed entitlement to the next-least-costly alternative instrument, thereby preventing some to almost all of the underlying intellectual resources from reverting to the public domain. Empirical evidence as described above provides a firm basis for believing that the stock of alternative instruments is rich and therefore the value of any cost difference is often nominal: that is, there typically exist effective alternatives substantially to cover any reduction in intellectual-property protection so that resource holders simply respond to downward adjustments in intellectual-property coverage by diverting resources to alternative instruments. If so, then each of the Conventional Propositions is at best nominally true in a meaningful range of circumstances: that is, any firm’s ability to control access, and therefore its anticipated incentive gains, is largely invariant to the effective level of intellectual-property coverage, given that a firm

\(^{24}\) 149 F.3d 1368 (Fed. Cir. 1998).

\(^{25}\) The remainder of the discussion will continue to focus primarily on downward adjustments in intellectual-property coverage, in part for reasons of space and in part because that is the proposal “on the table” at the moment. As suggested by the general articulation of the discussion so far, I believe that the analysis would substantially apply with some modification to upward adjustments in intellectual-property coverage. The basic intuition is simple. The same circumstances where downward adjustments of intellectual property make no difference are the same circumstances where upward adjustments of intellectual property make no difference: alternative instruments replicate the appropriation outcomes that firms would rationally secure by law at the same or higher cost.
approximately maintains its appropriation capacities by shifting resources within its appropriation portfolio.

A simple hypothetical will suffice to illustrate how this thesis substantially complicates the incentives/access tradeoff that drives the standard policy calculus. Suppose that a profit-maximizing firm devotes its appropriation budget to protect 100% of the gains generated by its innovation investment through a combination of patent and non-patent instruments, where patents provide 20% of the total protection against third-party expropriation. Now suppose that patents are abolished and therefore drop out of the appropriation portfolio. Does this affect the firm’s ability to capture the gains from its investment ex post and hence, its innovation incentives ex ante? Following a conventional analysis, the outcome is clearly determinate (so determinate that the question appears rhetorical): access costs will fall given the withdrawal of patent protection and the resulting expansion of the public domain, which in turn will cause innovation gains to fall as firms anticipate reduced appropriation capacities. But this reflects a static approach that fails to take into account market responses to changes in intellectual-property protection. Following a dynamic approach, the outcome is clearly indeterminate without further information: firms may respond to the withdrawal of patent protection by migrating to alternative instruments that make up most or almost all of any lost appropriation capacity, in which case even a nontrivial reduction in patent coverage has a trivial effect in reducing access costs and innovation returns.26 Even more dramatically, as argued further below, firms may migrate to alternative instruments that surpass any withdrawn appropriation capacities, in which case a nontrivial reduction in patent coverage has a nontrivial but perverse effect by increasing access costs and reducing innovation returns.

In contrast to the single determinate outcome anticipated in standard commentary, a dynamic analysis contemplates multiple possible outcomes following any downward adjustment in intellectual property. Each outcome, however, can be anticipated at some level of approximation as a function of the direction and the size of any “incentive/access

26 Note that my distinction between “static” and “dynamic” approaches does not track the distinction, sometimes made in intellectual-property (and antitrust) commentary, between a static efficiency approach, which seeks to align market pricing with marginal cost (and therefore implies weak to no intellectual property rights), and a dynamic efficiency approach, which seeks to enable innovators to recover the fixed costs of research and development (and therefore implies strong intellectual property rights).
effect” as a result of the reduction in intellectual-property coverage. Where the direction is positive (i.e., “less IP” reduces innovation gains and access costs), then the effect is “non-perverse”; and where size is substantial, the effect is “non-trivial”, and *vice versa*. If for simplicity we use binary assignments of “positive/negative” values for direction and “large/small” values for size, then these outcomes can be derived based on the interaction between these two variables, as shown in Table I below. In case (i), direction is positive and size is large, in which case innovation gains and access costs are reduced, following the standard incentives/access tradeoff; in case (ii), direction is positive but size is small, in which case the incentive-access tradeoff holds but to a trivial extent; and in case (iii), size is large but direction is negative, in which case innovation gains are reduced but access costs are *increased*, thereby partially reversing the standard incentives/access tradeoff.

Table I: Possible Effects of Downward Adjustment in Intellectual-Property Coverage

<table>
<thead>
<tr>
<th>Direction (positive)</th>
<th>Size (large)</th>
<th>Size (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Non-Perverse, Non-Trivial</td>
<td>(ii) Non-Perverse, Trivial</td>
<td></td>
</tr>
</tbody>
</table>

A conventional static analysis views direction and size as fixed values: direction is always positive and size is always large, in which case the non-perverse, non-trivial result (case (i)) anticipated by standard commentary always and exclusively applies. But a dynamic analysis anticipates that both size and direction may vary. Size will vary as determined by the value of D, which denotes the difference in the per-unit cost of coverage between the relevant intellectual property entitlement and the remaining portfolio of alternative instruments. Suppose that $D = K_a - K_b$, where K_a = the cost per unit of coverage provided by the relevant intellectual property instrument and K_b = the cost per unit of coverage provided by alternative instruments. Standard analysis assumes (without demonstrating) that it is *always* the case that the value of K_b is infinite or exorbitant relative to the value of K_a, in which case $K_a < K_b$ and $D < 0$. This implies that the firm will decline to adopt any alternative instrument in order to cure the appropriability shortfall, which means in turn that innovation gains and access costs
always correlate positively with entitlement strength following the standard policy
calculus (case (i) above). However, if we contemplate an unlimited range of negative
and positive values for D (which is to say, we contemplate that the value of \(K_b \) is not
always infinite or exorbitant relative to the value of \(K_a \) and may sometimes fall below it),
then the standard relationship no longer necessarily holds to any substantial extent and
can even be reversed. Specifically, two contrary outcomes may obtain: (i) where \(K_a = K_b \),
then \(D = 0 \) (or more realistically, \(K_a \approx K_b \), so that \(D \approx 0 \)) and there is no effect (case (ii)
above); and (ii) where \(K_a > K_b \), then \(D > 0 \) and, under certain additional assumptions
described below, there can be a perverse effect (case (iii) above).27

Below I explore in greater detail these idealized cases, presented in the form of
four stylized “scenarios” that exhibit different incentive effects and access effects
consequent to downward adjustments in intellectual-property protection. These include:
(i) two “simple” scenarios that demonstrate the extreme cases where there are perfect or
no substitutes for intellectual property protection (corresponding to cases (i) and (ii)
above, respectively) and (ii) two “complex” scenarios where there exists a range of
imperfect substitutes for intellectual property protection (corresponding to the “perverse”
case (iii) above and a variant of “non-trivial” case (i)). Each scenario exhibits standard
or non-standard effects on incentive gains and access costs as a result of two factors: (i)
the distribution of per-unit costs of coverage across available appropriation instruments
and (ii) the distribution of units of coverage across available appropriation instruments.
The following discussion identifies more precisely the conditions under which downward
adjustments in intellectual property are and are not likely to exert any effect on
innovation gains and access costs and, as a result, the conditions under which the
standard incentives/access tradeoff is and is not likely to provide a reliable guideline for
policy analysis of changes to intellectual-property protections.

27 Some readers may observe that this perverse result, where a reduction in intellectual-property
coverage causes firms to purchase higher levels of coverage through a less costly alternative instrument,
begs the question of why a firm would have ever used a costlier legal instrument to achieve less coverage.
The answer is that protection may degrade the value of the product, in which case lower levels of coverage
may maximize profits relative to any higher level of coverage if firms must accept a sufficient discount on
“overly” protected goods. For further discussion, see infra Part I.C.4.
1. **Simple Scenario I: Certainly Non-Trivial, Non-Perverse Effect.**

In *Simple Scenario I*, the cost of alternative instruments in the firm’s appropriation portfolio is exorbitant or infinite relative to the cost of abolished intellectual-property instruments. This would be satisfied in the case where there exists no substitute for intellectual-property protection. Somewhat remarkably given the substantial body of empirical evidence to the contrary, this is the case that drives the vast majority of legal and economic analysis of intellectual property, which assumes that intellectual goods that are legally unprotected by intellectual-property entitlements are actually unprotected. That is: any asset that is not protected by law falls into the open-access public domain. Where this assumption is maintained, then any downward adjustment in intellectual property is clearly nontrivial and yields all the standard effects: reduced innovation incentives and increased access costs, which then requires that normative analysis proceed on the basis of the standard incentives/access tradeoff. But that is a result that simply follows by construction from an artificial set of assumptions that will infrequently or even rarely be satisfied in any practical setting. Clearly this is not the paradigm case that should govern policy discussions of intellectual property.

2. **Simple Scenario II: Certainly Trivial, Non-Perverse Effect.**

In *Simple Scenario II*, the cost of alternative instruments is equal or approximately equal to the cost of abolished or curtailed intellectual-property instruments. This would be satisfied in the case where there is an exact substitute for intellectual-property protection. Under this assumption, it self-evidently follows that eliminating intellectual-property protection makes no difference since firms can substitute other instruments to achieve the same level of protection, in which case none of the standard effects follows: more or less intellectual-property protection has no effect on innovation incentives or access costs and hence, does not generate the conventional incentives/access tradeoff for purposes of normative analysis. Clearly this too is not the paradigm case that should govern policy discussions of intellectual property.
3. **Complex Scenario I: Potentially Non-Trivial, Non-Perverse Effect.**

Simple Scenario I is obviously unrealistic: it must almost always be the case that firms have *some other* feasible instrument by which to raise competitors’ imitation costs to *some* extent and empirical inquiries suggest that those alternative instruments typically raise competitors’ imitation costs by a substantial extent. But this scenario can easily be modified by simply assuming that the cost of alternative instruments *less* the cost of abolished or curtailed intellectual-property instruments yields a positive but non-exorbitant value (i.e., $D < 0$ but $D << 0$). This would be satisfied in a world where there exist materially but not radically costlier alternatives to intellectual property protection. Under this assumption, eliminating or curtailing intellectual property has a nontrivial effect to the extent that a firm’s re-allocation of its fixed appropriation budget to the next-least-costly set of substitute instruments will not fully replicate the protection formerly provided by intellectual property. The *direction* of this effect is clear and follows standard expectations: the relaxation of intellectual-property protection results in reduced coverage of the relevant pool of intellectual goods, in which case access is decreased, innovation incentives are reduced and normative evaluation can proceed on the basis of the standard incentives/access tradeoff. But note that the *size* of this effect is not clear: that is, whether this certain effect is trivial or nontrivial depends on the relative distance between the lapsed intellectual-property instruments and the next-least-costly combination of alternative instruments. Where that distance has a nominal value, then downward adjustments in intellectual-property coverage can reduce incentives, and increase access, by only a trivial magnitude, approximately equivalent to *Simple Scenario II* where there is perfect cost-equivalence between intellectual property and other appropriation instruments. Where that distance has a substantial value, however, then abolishing intellectual-property protection may make considerable difference as the next least-costly instrument stands at a considerable distance from the lapsed intellectual-property instrument, in which case firms will be unable to incur the incremental nontrivial costs of covering the entire shortfall by substituting toward alternative instruments. In that case (that is, where it costs *much more* to replicate the coverage formerly provided by intellectual-property instruments), downward adjustments in intellectual property roughly follow conventional expectations: incentives are reduced.
and access is increased by nontrivial magnitudes, in which case normative analysis can proceed on the basis of the standard incentives/access tradeoff.

This familiar non-trivial case is illustrated using hypothetical values in the Table below. Suppose that a record label spends $10 to purchase 100 units of coverage for each digital release through a copyright entitlement (which yields a per-unit cost of coverage equal to $0.10); then suppose that copyright protection is abolished or widely ignored in the relevant jurisdiction; and finally, suppose that the firm can spend the same $10 per release to devise a contractual license that can only deliver 80 units of coverage (which yields a per-unit cost of coverage equal to $0.125). That is: the contractual substitute exerts inferior appropriation capacities relative to copyright protection, with the result that the firm internalizes a smaller portion of its innovation investment while third parties incur lower access costs. The relaxation of intellectual-property protection causes a rise in the per-unit cost of coverage available to the resource holder, which in turn causes a fall in the number of units of coverage that can be purchased, which in turn limits the price that the producer can demand, lowering anticipated profits. This follows the standard incentives/access tradeoff: access by third parties is increased at the price of reduced profits and incentives on the part of the innovator.

Table II: Non-Trivial, Non-Perverse Outcome: Less IP Reduces Gains, Increases Access\(^{28}\)

<table>
<thead>
<tr>
<th></th>
<th>Units of Coverage</th>
<th>Cost of Coverage</th>
<th>Price</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Protection</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Copyright Protection</td>
<td>100</td>
<td>$10</td>
<td>$40</td>
<td>$30</td>
</tr>
<tr>
<td>Next-Least-Costly</td>
<td>80</td>
<td>$10</td>
<td>$32</td>
<td>$22</td>
</tr>
</tbody>
</table>

Note that the figures in the “Profits” column assume that “cost of coverage” is the sole marginal cost (so profits = price less cost of coverage). This reflects a market where (i) the marginal cost of production and distribution is zero and hence (ii) the vendor’s pricing power is entirely derived from the exclusivity it can establish through appropriation instruments, whether intellectual property or other devices. That would seem to describe the online music market, the provisional example discussed above. For simplicity, I exclude the vendor’s fixed costs.

A dynamic analysis proposes that relaxations in intellectual-property coverage induce any firm to migrate to the next least-costly instrument in its appropriation portfolio so as to maintain its appropriation capacities to the maximum extent possible. Assuming a fixed budget of appropriation resources, this implies that, if there is anything but perfect cost-equivalence between intellectual property and alternative instruments, then any reduction in intellectual-property coverage always yields some reduction in appropriation capacities, and hence, some reduction in anticipated innovation gains. Using the same amount of appropriation resources, firms that substitute towards the next least-costly appropriation instrument will necessarily be able to purchase fewer units of coverage than had previously been made available through the lapsed intellectual-property entitlement. If this is the case, then the direction of the access and incentive effects of “more or less IP” is certain but the size is uncertain, contingent solely on the difference in the per-unit cost of coverage provided by the next-least-costly appropriation instrument relative to the lapsed intellectual-property instrument. So the effect is always non-perverse—“less IP” always means lower access costs and reduced innovation gains—but the magnitude may or may not be non-trivial.

But even the direction may be uncertain. The non-perverse result implicitly assumes that a firm can always purchase precisely the number of units of coverage it desires but at increasing costs per unit of coverage as it moves through its appropriation portfolio. This ensures that a firm’s substitution toward the next least-costly instrument in its portfolio would always provide coverage at some level less than the preexisting level of coverage: given a fixed appropriation budget and a higher per-unit cost of coverage, the firm is forced to settle for a reduced appropriation capacity. However, even the direction of the effect could be uncertain if alternative instruments deliver units of coverage in “lumpy” quantities, such that the next-least-costly instrument offers more units of coverage than the firm had previously purchased using the withdrawn intellectual-property entitlement. In that case, the next-least-costly appropriation instrument can only deliver appropriation capacities in an amount that exceeds the firm’s appropriation budget. If we hold constant the fixed appropriation budget, the firm then must settle for zero appropriation capacities within its budget (since the “minimum”
number of units of coverage that are available would exceed the budget); if we relax the assumption of a fixed appropriation budget, the firm may divert resources from other uses to purchase a stronger but non-profit-maximizing amount of coverage.

A simple numerical example can illustrate this contingency, which is then presented in the Table below. Suppose as above that a record label spends $10 to purchase 100 units of coverage for each digital release through a copyright entitlement (which yields a per-unit cost of coverage equal to $0.10); then suppose that copyright protection is abolished in the relevant jurisdiction; and finally, suppose that the firm can spend $25 per-release to implement a DRM technology that can deliver “packages” of at least 200 units of coverage (which yields a per-unit cost of coverage equal to $0.125). That is: the technological substitute is superior to copyright protection, with the result that the firm internalizes a greater portion of its innovation investment and third parties incur a higher level of access costs under a lower (zero) level of copyright protection.

But why wouldn’t the firm simply have used this more potent but more expensive instrument previously? If we assume a fixed appropriation budget, then the answer is straightforward: the firm could not afford it. If we relax that assumption, then we can assume that the firm may have rationally declined to use this more potent alternative instrument because it degraded the value of its product, thereby limiting the price it could demand from consumers, so that the firm maximizes profits at some imperfect level of protection against third-party access. However, given the absence of copyright protection, it may now be profit-maximizing for the record label to employ this once-disfavored alternative: that is, if the firm now faces a choice between zero units of coverage (at $0), which will invite free imitation and push down price to marginal cost (assumed to be $0), and excessive units of coverage (200 units at $25) that still yield some positive profits, it will rationally select the latter as its “second-best” option, which it would not have selected if the appropriation portfolio still included an intermediate level of coverage (100 units at $10). This result is set forth in tabular form below, using hypothetical values to illustrate the stylized results.
Table III(a): Non-Trivial, Perverse Outcome: More IP Reduces Gains and Access29

<table>
<thead>
<tr>
<th>Units of Coverage</th>
<th>Cost of Coverage</th>
<th>Price</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Protection</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Copyright Protection</td>
<td>100</td>
<td>$10</td>
<td>$40</td>
</tr>
<tr>
<td>Next-Least-Costly Protection</td>
<td>200</td>
<td>$25</td>
<td>$35</td>
</tr>
</tbody>
</table>

There is an interesting alternative to this hypothetical, whereby a perverse result can be reached without relaxing the assumption of a fixed appropriation budget. Suppose all the facts and hypothetical values stated above, except that DRM technology delivers 200 units of coverage at $10 per release (rather than $25 as supposed above). This would mean that DRM represented the firm’s “next-most-costly” appropriation technology as compared to copyright and therefore comfortably fits within its appropriation budget. Put differently: the lapsed intellectual-property entitlement delivered coverage at a higher per-unit cost (100 units of coverage for $10, yielding a per-unit cost of coverage equal to $0.10) relative to the alternative appropriation instrument (200 units of coverage for $10, yielding a per-unit cost of coverage equal to $0.05). But the firm will nonetheless accept this deal with reluctance: given that it must purchase at least 200 units of coverage, use of the DRM technology sufficiently degrades the value of the firm’s product such that its profits are lower relative to a world in which copyright protection exists (but still higher than the zero profits obtained without purchasing any protection). Even though the DRM technology is more potent and has a lower per-unit cost of coverage relative to copyright, the firm maximizes profits by using the weaker and less cost-effective form of coverage. This can be reflected as follows.

29 See supra note 28 for some assumptions behind these values.
Table III(b): Non-Trivial, Perverse Outcome: More IP Reduces Gains and Access

<table>
<thead>
<tr>
<th>Units of Coverage</th>
<th>Cost of Coverage</th>
<th>Price</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Protection</td>
<td>0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Copyright Protection</td>
<td>100</td>
<td>$10</td>
<td>$40</td>
</tr>
<tr>
<td>Next-Most-Costly Protection</td>
<td>200</td>
<td>$10</td>
<td>$35</td>
</tr>
</tbody>
</table>

Both cases illustrate that the directional effect of any downward adjustment in intellectual-property coverage can be perverse: that is, depending on the composition of the firm’s appropriation portfolio, relaxing intellectual-property protections can induce migration to an alternative instrument that is more potent than the lapsed intellectual-property instrument and therefore increases access costs. At the same time, innovation incentives are reduced under a higher level of coverage because the firm earns lower profits due to degradation of the product: that is, reducing copyright protection forces the firm to consume alternative instruments at non-profit-maximizing levels. This possibility is vividly illustrated by the animal breeding industry, where breeders apparently “remedied” the appropriability shortfall created by weak patent protection by imposing strict contractual limitations and even infecting livestock so it could not be used for breeding purposes. Where intellectual-property protection is constrained, firms may rationally migrate to draconian alternative instruments that result in product degradation but nonetheless enhance profits relative to no protection at all. In short, intellectual property can be nontrivial but perverse: “less IP” can reduce innovation incentives,

30 See supra note 28 for some assumptions behind these values.

following conventional expectations, while also increasing access costs, contrary to conventional expectations.32

III. Why Intellectual Property Is Not Trivial (Sometimes)

The discussion above has identified conditions under which downward adjustments in intellectual-property coverage are likely to exert a trivial effect on access costs and innovation incentives, in which case innovative output will be roughly constant across the broad range of weak to strong intellectual-property regimes. In this Part, I identify the conditions under which adjustments in intellectual-property coverage \textit{can} make a difference, not as an incentive instrument for regulating innovative output but as a distributive instrument that shifts innovation rents from the holders of higher-cost appropriation instruments to lower-cost appropriation instruments.

A. An Unconventional View of Intellectual Property. The foregoing discussion has preliminarily established a few simple propositions.

Unconventional Proposition I. Intellectual property has a trivial effect on innovation incentives given perfect or near-perfect cost-equivalence between intellectual property and alternative instruments.

Unconventional Proposition II. Intellectual property has a nontrivial effect on innovation incentives where there is a lack of perfect or near-perfect cost equivalence between intellectual property and alternative instruments. But the size of this effect may

32 There is an interesting “virtuous” variant of this perverse scenario. If we suppose an \textit{upward} adjustment in intellectual property protections and assume a sufficiently lumpy distribution of units of coverage across appropriation instruments, then increasing intellectual property can sometimes increase innovation gains (following the standard outcome) but \textit{decrease} access costs (contrary to the standard outcome). This will be possible where the previous low (or zero) level of intellectual property protection compelled the firm to select a non-profit-maximizing excessive level of coverage (due to degradation of the product’s value) provided by an alternative instrument. An increase in intellectual property coverage enables the firm to select a \textit{lower} number of units of coverage, thereby avoiding product degradation and increasing the price that can be demanded from consumers. Applying the same analysis as used to generate the “perverse” outcomes identified above, this result can hold under a certain range of values whether the per-unit cost of coverage provided by the intellectual property instrument is more or less expensive than the existing alternative instrument (i.e., whether the alternative instrument is the next-least-costly or next-most-costly instrument in the firm’s appropriation portfolio).
be weakly nontrivial where there is no substantial difference between the cost of any lapsed formal instrument and the next-least-costly alternative instrument.

Unconventional Proposition III. Intellectual property has a nontrivial but perverse effect on innovation incentives if we assume (i) a substantial cost difference between intellectual property and alternative instruments and (ii) a lumpy distribution of the “units of coverage” across appropriation technologies such that the firm re-allocates resources to the next-least-costly (or even next-most-costly) instrument that delivers more units of coverage than the lapsed intellectual-property instrument.

These propositions collectively illustrate a fundamental thesis: there is no ground to presume the standard positive correlation between entitlement strength on the one hand and innovation incentives (more IP = more output) and access costs (more IP = more access costs) on the other hand, unless we assume that firms can only use alternative instruments at a substantially higher per-unit cost of coverage relative to intellectual property entitlements. Where there is substantial cost-equivalence between legal and extralegal instruments, then the incentives/access tradeoff has considerably less force: more or less intellectual property has no appreciable effect on access costs, in which case (everything else being equal) innovation incentives are substantially unaffected and technological or creative output should be roughly constant. Moreover, even if the underlying assumption is satisfied—that is, even if there is not substantial cost-equivalence—but alternative instruments deliver coverage in sufficiently “lumpy” quantities, then the former but not the latter correlation will hold true. That is: decreasing entitlement strength may lower output following conventional expectations but increase access costs contrary to expectations. Firms will rationally substitute toward appropriation instruments that deliver more coverage at a higher total cost (which can imply a higher or lower per-unit cost) than the firm would otherwise be willing to fund.
In short: the incentive-access tradeoff will sometimes yield a “lose-lose” result, where “less IP” delivers both less output and less access.\footnote{Conversely, as noted in the immediately preceding footnote, increases in intellectual-property protections can deliver a “win-win” result, where “more IP” delivers both more output and more access. See supra note 32.}

I will now focus on Unconventional Proposition II, which will, at varying magnitudes, yield the conventional positive correlation between entitlement strength and innovation incentives and access costs. Intuitively, this seems to capture most broadly the typical appropriation landscape in which firms tend to operate in most markets: neither the extreme scenario where there are no substitutes for intellectual property (Simple Scenario I) nor the extreme scenario where alternatives to intellectual property are perfect substitutes (Simple Scenario II). If we assume—as seems at least reasonable based on available evidence—that firms typically do have access to a wide range of alternative instruments at some non-exorbitant incremental cost, then it would follow that in a large number of circumstances, even substantial downward adjustments in intellectual-property protection are trivial or do not have a substantial effect with respect to innovation incentives and access costs. However, even if we are comfortable with the existing evidence on this point in some markets, we should preserve some meaningful scope of application for the conventional “IP matters” thesis. To hold that more or less intellectual property makes no difference with respect to innovation gains and access costs requires a further assumption: namely, it must be the case that the costs of implementing substantially equivalent appropriation instruments are distributed roughly equally among actual and potential market participants. If that is not the case, then a partial indifference thesis holds: while a reduction in intellectual-property coverage will have a trivial effect on total innovation gains and total access costs, it will have a non-trivial effect on the distribution of innovation gains and access costs among the total pool of market participants.

Recall the extreme case where there is perfect cost-equivalence between intellectual property and an alternative instrument in the form of a perfect technological lock. Obviously, stronger or weaker intellectual property coverage makes no difference in firms’ total appropriation capacities, in which case innovation gains and access costs should be unaffected. Now suppose two firms, A and B, each of which are contemplating...
making expenditures to develop, produce and distribute mutually non-infringing
technologies that will exhibit roughly comparable cost and non-cost attributes, except: (i)
A expects it can protect its product against imitation by using the lock at a cost equivalent
to enforcing available patent protections and (ii) B expects it can only do so at some
substantially higher cost. Then stronger or weaker intellectual property clearly does
matter in influencing the distribution of rents across firms, for the simple reason that only
A can expect to accrue rents without patent protection. If patent protection is available,
both firms enter and all rents in the market are split equally between A and B, who are
protected against outside entry; without patent protection, however, only A rationally
enters, who therefore accrues all available rents in the market, and B rationally declines to
make any investment at all.

This hypothetical identifies circumstances where total rents in the market
approximately hold constant irrespective of radical changes in intellectual property, but
the distribution of those rents among individual firms in the market is radically altered.
This case (of which multiple intermediate variants could be imagined) illustrates a simple
proposition: so long as we assume an unequal distribution of cost-equivalent alternative
instruments, “less IP” inherently advantages firms that have the lowest costs of
substituting toward alternative instruments, while “more IP” will inherently ameliorate
any such cost advantage, thereby sustaining firms that have the highest costs of
substituting toward alternative instruments. This yields:

Unconventional Proposition IV. Intellectual property has (i) a trivial effect on
innovation output if there is substantial cost-equivalence between intellectual property
and alternative instruments but (ii) a nontrivial effect on the distribution of innovation
gains across firms if substantially cost-equivalent alternative instruments are unequally
distributed across actual and potential market participants.

34 This hypothetical assumes that (i) where both A and B enter, tacit collusion preserves
supracompetitive rents, and (ii) where only A enters, B would not invest simply to exploit the opportunity to
accrue the short-term gains from underpricing A, so long as B would still be unable to recover its fixed-cost
R&D expenditures, resulting in an anticipated net loss. Presumably B could not extract a portion of A’s
anticipated monopoly rents by threatening to sell its technology to a third party, so long as informational
asymmetries (which are especially severe prior to product development, as assumed above) render any such
threat sufficiently non-credible.
We can therefore suppose a market where, following element (i), even complete elimination of intellectual property protection has little or no effect on total innovation output because firms taken as a whole recover appropriation capacities through extralegal instruments—hence, intellectual property is trivial as an incentive instrument. However, following element (ii), the absence of intellectual property “selects against” firms that have the highest-cost access to alternative cost-equivalent appropriation instruments while it “selects for” firms that have the lowest-cost access—hence, intellectual property is nontrivial as a distributive instrument. Put differently: assuming a robust supply of alternative exclusionary instruments, the total amount of innovation rents under a stronger or weaker intellectual-property regime is roughly invariant while the distribution of rents varies considerably.

Extrapolating from Unconventional Proposition IV, we can now state more completely the conditions under which intellectual property will and will not matter. Namely: more or less intellectual property has completely trivial effects where two conditions are met: (i) there is substantial cost-equivalence between intellectual property and alternative instruments, and (ii) cost-equivalent alternative instruments are distributed roughly equally across firms. Where assumption (i) is not satisfied, then intellectual property is nontrivial as an incentive instrument; where assumption (ii) is not satisfied, then intellectual property is nontrivial as a distributive instrument. Where both assumptions are satisfied, then intellectual property is trivial in both respects. This taxonomy of possible outcomes is summarized below.

Table IV: Incentive and Distributive Effects of Intellectual Property

<table>
<thead>
<tr>
<th></th>
<th>Equal Distribution</th>
<th>Unequal Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost-Equivalence</td>
<td>Completely Trivial</td>
<td>Trivial Incentive Effect; Nontrivial Distributive Effect</td>
</tr>
<tr>
<td>Non-Cost-Equivalence</td>
<td>Nontrivial Incentive Effect; Trivial Distributive Effect</td>
<td>Completely Nontrivial</td>
</tr>
</tbody>
</table>
These multiple outcomes stand in contrast to conventional commentary, which normally presumes without contemplation that the “Completely Nontrivial” result is the only possible result. In particular, these results pose a challenge to two standard assumptions in scholarly and popular discussions of intellectual property. First, it means that there is no determinative incentive effect of weaker or stronger intellectual-property coverage, absent information as to the distribution across alternative instruments of the costs of coverage (and, to be complete, information as to the distribution of units of coverage across alternative instruments, which can give rise to surprisingly perverse outcomes). Second, even where there is substantial cost-equivalence, so innovative output should be roughly constant across different levels of intellectual-property coverage, there is no determinative distributive effect of weaker or stronger intellectual-property coverage, absent information as to the distribution across firms of the costs of using alternative instruments.

Scholarly and popular commentary normally assumes that stronger intellectual-property coverage has “regressive” distributive effects by shifting rents toward large firms that then enjoy strengthened barriers against market entry; and conversely, weaker intellectual-property coverage has “progressive” distributive effects by lowering entry barriers and shifting rents toward users and small firms that have limited access to alternative appropriation technologies. Take a typical example from a recent contribution, where the author states that allocating strong intellectual property rights presents a policy tradeoff between increasing innovation incentives by improving anticipated profits and raising barriers to entry by consolidating control over a particular industry. That statement makes the implicit (and seemingly uncontroversial) assumption that a world with stronger intellectual property rights will necessarily impose higher entry costs, and therefore exhibit higher market concentration, relative to a world with weaker intellectual property rights. But that assumption can easily be falsified.

See Tim Wu, Intellectual Property, Innovation and Decentralized Decisions, 92 VA. L. REV. 123, 123-24 (2006). This is merely an indicative example; it is a long-standing argument in intellectual-property commentary. For an historical example, see WALTON HAMILTON, PATENTS AND FREE ENTERPRISE (Temporary National Economic Committee, Monograph No. 31) (76th Cong., 3d Sess., Senate Cmte. Print (1941)), included in ROBERT P. MERGES & JANE C. GINSBURG, FOUNDATIONS OF INTELLECTUAL PROPERTY 46 (2004) (arguing that, during the 19th-century, patent rights foreclosed entry by individual inventors into mature technological fields while individual inventors flourished in any field where patent rights were absent).
Consider a counterexample. In the late 19th-century, U.S. railroads formed information clearinghouses to which member firms disclosed technical knowledge, apparently in order to generate a large body of prior art that could operate to strike down any non-member patent claims.36 Consistent with this interpretation, member firms advised each other on how to innovate so as to design around non-members’ patents and lobbied for legislative and judicial changes to limit patent damages and effect other favorable changes in the patent laws.37

This result seems like an anomaly for conventional static analysis of intellectual-property coverage. But a dynamic analysis of intellectual-property coverage fully anticipates this outcome insofar as it does not make any “directionally uniform” assumption as to the distributive effects of weaker or stronger levels of legal protection against third-party imitation. Weaker patent rights most likely protected the market position of incumbents in the railroad industry, who were well-sheltered against entry by the large fixed capital costs that must have been required to mount entry into the industry. This observation can be generalized. If we anticipate that firms respond to adjustments in intellectual property coverage by substituting toward market alternatives in order to sustain appropriation capacities and then reasonably assume that firms do not incur equal costs in exploiting alternative instruments, stronger intellectual property rights can easily reduce entry costs and endanger incumbents’ market position. To be perfectly precise: the distributive effects of weaker or stronger intellectual-property coverage will depend on the relative costs incurred by different firms to substitute toward alternative instruments. Following that formulation, there is no ground to expect as a general matter that the standard distributive effect of upward and downward adjustments in intellectual-property will be uniformly regressive or progressive, respectively. But this observation does not consign policy analysis to mere guesswork: the same dynamic framework supplies an analytical instrument by which reasonably to anticipate the distributive effects of adjustments in intellectual-property coverage based on a well-defined set of relevant variables. I will now consider these distributive effects in greater detail.

37 See id.
B. Distributive Effects of Intellectual Property.

Two typical scenarios can be envisioned that reverse or fail to replicate the standard distributive outcomes associated with upward or downward adjustments in intellectual-property coverage: (i) “vertical” distributive effects, whereby rents are shifted from small-firm entrants to large-firm incumbents, and (ii) “horizontal” distributive effects, whereby rents are shifted among large firms situated roughly at the same level of industrial organization. Both effects are a function of the relative costs firms incur in migrating to alternative appropriation instrument. But only the former effect is likely to be an outcome that could demand policy intervention from a social point of view.

1. Vertical Distributive Effects.

The business management and industrial organization literatures widely agree that established large firms have greater access to alternative instruments relative to smaller entrants, largely due to the fact that most of these instruments—e.g., firm goodwill, economies of scale, and production and distribution capacities and efficiencies—are inherent by-products of the vertically-integrated forms of organization and/or long-term market positions that tend to characterize incumbent firms. Following this observation, the standard distributive result attributed to intellectual property is largely reversed: weaker intellectual property will have regressive effects by providing large firms with an appropriation-cost advantage over any potential small-firm competitor that must incur greater costs to replicate the incumbent’s appropriation capacities. Under that same assumption, stronger intellectual property will have progressive effects by providing small firms with a tool by which to combat the natural appropriation-cost advantage of larger firms. That is: weak intellectual property can act as a barrier to entry that protects the market position of incumbents while strong intellectual property can act as a critical tool by which entrants can challenge incumbents’ market position. Without patent protection, small-firm innovators (who, notably, are not part of the sample sets in the aforementioned survey studies that cast doubt on the relative importance of patent

protection are arguably left to the mercy of established large firms and will therefore have substantially reduced incentives to undertake innovation projects. This intuition is amply confirmed by historical lobbying behavior in the patent context, which shows that small inventors (or investment entities that fund small inventors) tend to promote strong intellectual property coverage while large technology-dependent firms (outside of pharmaceuticals and chemicals) tend to promote moderate and, as I argue in a recent paper, sometimes even weak or zero levels of intellectual property coverage. Following a dynamic analysis of adjustments in intellectual-property coverage, that is an unsurprising outcome. Small firms rationally anticipate that any withdrawal of intellectual-property coverage will operate to the advantage of larger firms, who bear fewer incremental costs in curing the resulting appropriability shortfall by recourse to alternative instruments. Conversely, large firms rationally anticipate that any withdrawal of intellectual-property coverage will operate to the disadvantage of small firms, who bear larger incremental costs in curing the resulting appropriability shortfall by recourse to alternative instruments.

2. Horizontal Distributive Effects.

The distributive effects of stronger or weaker intellectual-property coverage may simply amount to socially-indifferent resource transfers among large firms, none of which present a plausible candidate for distributive equity. Suppose that an intellectual property entitlement is abolished and firms can recover at least some appropriation capacities by recourse to complementary assets that are not accessible at equal cost by all market participants. Reconsider our earlier hypothetical, where copyright is no longer available to protect digitally-released musical works, but with one modification: record labels have little access to substitute instruments for copyright but other entities have abundant access. This is not a far cry from the real world: the effective erosion of

39 See supra notes 6 and 7 and accompanying text.

40 For similar observations, see Cohen et al, supra note 6; Levin et al, supra note 6; Richard Gilbert & Zvi Griliches, Appropriating the Returns from Industrial Research & Development: Comments and Discussion, BROOKING PAPERS ON ECONOMIC ACTIVITY, Vol. 3 (1987), at 831.

copyright protection over recorded music appears to injure the record labels while benefiting hardware manufacturers such as Apple and “OEMs” that sell portable media devices whose utility increases as the cost of storable content falls, and ticket-sellers, concert-promotion and venue-management companies, which derive revenues from the sale of tickets to live performances, which are in turn promoted by the diffusion of free musical content. Downward adjustments in intellectual-property coverage will then have little impact on total innovation rents but will shift those rents across firms or even markets so that entities that incur the lowest cost of accessing the substitute appropriation technology will tend to capture market share from entities that do not. Thus, the erosion of copyright in music may have little effect on the total rents generated by musical output but nonetheless operate to the great detriment of the record labels, who have relatively higher-cost access to any alternative instruments, and the great benefit of hardware manufacturers and concert promoters, who have relatively lower-cost access to complementary assets that enable holders to capture at least some of the rents generated by music production, which now operates as a “loss leader” to facilitate the sales of concert tickets and consumer-electronics devices. So long as incentive effects at the production and distribution levels are largely unchanged (to be sure, an open empirical question), the associated selection effects—the record industry loses but the hardware and concert-promotion industries win—is a matter of social indifference from a distributive point of view.

III. Why Intellectual Property May Be Indirectly Nontrivial (Sometimes)

The discussion above has yielded the following proposition: more or less intellectual property sometimes makes little difference in the total amount of innovation rents but great difference in the allocation of innovation rents among various participants in the market based on their relative costs of developing and exploiting alternative instruments. That proposition nicely tracks two otherwise-irreconcilable but well-established social facts: (i) there exists little evidence that stronger or weaker intellectual

42 For reviews and independent research relating to the economic injury suffered by record labels as a result of piracy, see Stan J. Liebowitz, *File-Sharing: Creative Destruction or Just Plain Destruction?*, 49 J. L. & ECON. 1 (2006); Martin Pielz & Paul Waelbrock, *The Effect of Internet Piracy on Music Sales: Cross Section Evidence*, 1 REV. ECON. RES. ON COPYRIGHT ISSUES 78 (2004).
property results in appreciably greater or lesser levels of innovation investment, and (ii) firms and other participants devote substantial resources to influencing the levels of intellectual property protection made available by the state. If intellectual property makes little difference “on the margin” as an incentive device, then result (i) is entirely anticipated; and if intellectual property makes substantial difference “on the margin” as a distributive device, then result (ii) is also entirely anticipated. If intellectual property sometimes operates principally as a distributive device for allocating innovation rents among market participants, then downward or upward adjustments in intellectual-property can be reduced to simple politics: that is, intellectual-property outcomes mediated by the judicial and/or legislative processes are socially-indifferent reflections of privately self-interested investments by firms and other participants to maximize their portions of the social pie generated by innovation investment. Individual firms recognize that stronger or weaker intellectual-property regimes reward or punish firms that have higher-cost or lower-cost access to certain alternative appropriation technologies and self-interestedly undertake lobbying actions to generate the level of intellectual-property protection that maximizes the firm’s competitive cost-advantage or minimizes its competitive cost-disadvantage. It is no accident that medieval trade guilds opposed patent protection in the early modern era: this represented an appropriation instrument that would enable individual inventors to overcome the powerful appropriation-cost advantages of the established guild entities, protected by alternative instruments in the form of goodwill, know-how and imperfect legal exclusivity over the employment of skilled labor and the sale of certain goods. And it is no accident that record labels vociferously support copyright protection in our late modern era: this represents an appropriation instrument that enables record labels to overcome the appropriation-cost advantages of hardware manufacturers, concert promoters and other holders of complementary assets, which (unlike record labels) can recoup returns from musical output even in the face of (or precisely due to) widespread piracy.

At this point, we could take the following view: as a positive matter, intellectual property *can* and often *does* make a difference by allocating innovation rents among market participants; however, as a normative matter, these selection effects are immaterial and therefore “more or less” intellectual property is a matter of indifference from a social point of view. But this indifference thesis must consider a final possibility, which is *not* socially indifferent: namely, the distributive outcomes generated by stronger or weaker levels of intellectual property may indirectly exert incentive effects with respect to the *direction* (or quality) of innovation investment, even if it exerts no incentive effect with respect to the *rate* (or quantity) of innovation investment.44 If that is the case, then changes in intellectual-property protection *can not* be reduced to simple politics and *do* implicate a collective interest in maximizing the social value generated by innovation investment. If intellectual property is *not* trivial with respect to incentive effects on the direction of innovation investment, then there must be some correlation between the types of firms—or more generally, the forms of organization and other transactional structures—that are advantaged by stronger or weaker forms of intellectual property and certain types of innovation investment. Stronger levels of intellectual-property coverage logically tend to favor small, relatively unintegrated firms by overcoming the “natural” appropriation-cost advantage enjoyed by large, relatively integrated firms, which have lower-cost access to alternative instruments; and conversely, weaker levels of intellectual-property coverage logically tend to favor large firms by exacerbating their inherent appropriation-cost advantage over entrants that do not have access to the appropriation technologies inherent to an integrated form of firm organization. If intellectual property is abolished, then there are few tools available to an unintegrated firm by which to recover returns from innovation investment in the face of competition by incumbents that have unique access to alternative instruments, including global distribution networks, low-cost production technologies, and established firm goodwill. Hence, even if intellectual property has little effect on the innovative output of the market in general (which will tend to recover innovation rents through some other

44 For the original source of the distinction between the “rate” and “direction” of innovation investments, see Kenneth J. Arrow, *Economic Welfare and the Allocation of Resources for Innovation*, in Nat’l Bureau of Econ. Research, The Rate and Direction of Inventive Activity: Economic and Social Factors (1962).
mechanism), it may have a great effect on the transactional and organizational structures used to govern the production and distribution of intellectual goods, which in turn operates to the advantage of some firms and the disadvantage of all others.

This proposition can be briefly illustrated by historical changes in firm organization in the semiconductor industry, which has experienced substantial changes in the enforcement of patents and other intellectual-property entitlements. During the several decades through the early 1980s, patent rights were generally weak: using this paper’s terminology, the state set an exorbitant price to purchase units of coverage against third-party imitation. During this time, firms in the industry tended to operate under vertically-integrated structures—that is, each firm independently maintained R&D, production and distribution capacities—that constrained involuntary spillovers by limiting outside access to private knowledge at various points in the product development and supply chain. The high price of patent protection caused firms to exploit lower-cost appropriation technologies in order to capture innovation returns and indirectly raised entry barriers to any firm that could not access those alternative appropriation technologies at the same or comparable cost. Starting in the early 1980s, however, patent protection was strengthened as a result of strong enforcement of patent rights by the Court of Appeals for the Federal Circuit, which in turn supported wider adoption and litigation of patent rights in the semiconductor industry in particular. Using the terminology set forth above, the state lowered the price at which firms could purchase units of coverage through patent protection, which logically enables the entry of firms that can not access alternative appropriation technologies at a feasible cost and therefore

46 In 1984, the industry successfully lobbied for the enactment of sui generis “mask work” design protections, see Semiconductor Chip Protection Act of 1984, Pub. L. No. 98-620, tit. III, 98 Stat. 3347 (codified at 17 U.S.C. §§ 901-914 (Supp. II 1984). However, the statute has had little effect due to certain technological advances that frustrate replication based solely on reverse engineering of the layout design. See Leon Radomsky, Sixteen Years After the Passage of the U.S. Semiconductor Chip Protection Act: Is International Protection Working?, 15 BERKELEY TECH. L. J. 1049, 1051-52 (2000). Note that this is an example where private appropriation instruments surpass, and render moot, an upward adjustment in intellectual-property protection.
rely primarily on intellectual property in order to defend innovation rents. That is precisely what happened. Roughly as the coverage and strength of available intellectual-property protections increased, the semiconductor market witnessed the rapid growth of “fabless” and other “design-only” firms that operate under weakly-integrated structures that are largely restricted to developing patent-protected “chip designs”, which are marketed as intermediate inputs to strongly-integrated entities that develop “systems on a chip” for incorporation into fully-assembled electronic devices, and then rely on contract to disclose and transfer patented assets and related know-how to other entities that undertake capital-intensive manufacturing and other functions further down the supply chain.

Even if innovative output is largely invariant to the level of intellectual-property protections, both firm organization and industry composition will vary considerably as a function of the strength of governing intellectual property entitlements: the state-determined price of maintaining coverage through intellectual property favors the use of certain transactional and organizational structures used to capture returns from innovation investments, which in turn rewards firms that can access those structures at the lowest cost and punishes all others. If so, then intellectual property is primarily a “second-order” regulatory device for influencing the organizational structures under which intellectual production takes place rather than a “first-order” regulatory device for directly inducing innovative output. As a positive proposition, that is a matter of great interest and demands further inquiry to understand its scope of application. But, even if assumed to be true over some meaningful range of circumstances, does this proposition have any relevance as a normative matter?

The differential survival rates of large or small firms—or more precisely, integrated and non-integrated organizational forms—under different levels of intellectual-property protection is simply an industrial phenomenon that implicates no incentive effects, unless there is evidence to believe that small firms—or more precisely and generally, weakly-integrated entities—have unique innovation capacities at some stage of the innovation process in some economically meaningful settings. There is a voluminous amount of research on the topic, which, described conservatively, is less than determinative in the aggregate but a fair amount of which supports the view that small firms are most suited to undertake breakthrough research projects and are often the catalysts of novel technologies that trigger the start of a new innovation cycle. There is especially compelling support for the innovative vigor of small firms in the biotechnology market, which, as noted in part earlier, has historically been driven by the research and development performed by thousands of “upstream” firms, which in turn license patent-protected innovations to large vertically-integrated “downstream” pharmaceutical firms. Given the high stakes involved and lucrative opportunities for third-party expropriation, it is hard to imagine how these contractual arrangements among otherwise unrelated entities would be rationally implemented without secure property rights.

These limited findings (which correspond to widespread beliefs in the business world) may be a function of certain organizational features or a simple reflection of different competitive pressures: large firms tend to undertake low-risk incremental innovation projects that preserve market share while small firms tend to undertake high-risk radical innovation projects that seek to capture market share. In markets where this

48 For some leading sources and reviews of the literature, see P.A. Geroski, Market Dynamics and Entry (1991); Morton I. Kamien & Nancy L. Schwartz, Market Structure and Innovation (1982). For a brief review of the literature for a legal audience, see Barnett, Genetic Commons, supra note __, at 1025 n.106.

49 See supra note 16 and accompanying text.

50 The standard culprits for large-firm underperformance in R&D are informational asymmetries and agency costs, which lead large-firm managers to favor safe projects over risky projects even if the former has a higher discounted present value. For arguments to this effect, see Bengt Holmstrom, Agency Costs and Innovation, in The Markets for Innovation, Ownership and Control 131, 131-53 (eds. Richard H. Day et al., 1993). Broader arguments fault the hierarchical structure of large-firm organizations as stifling radical innovation, see, e.g., David J. Teece, Firm Organization, Industrial Structure and Technological Innovation, 31 J. Econ. Behav. & Org. 193, 201, 212-13 (1996).
connection between small firms and radical innovation investment has some empirical
 grounding, the distributive effects of weaker intellectual property protections—and the
collateral effects on the economic viability of certain transactional structures—may
indirectly have incentive effects on the direction of innovation projects that are pursued
in the market. While appropriation capacities in general and therefore innovative output
in particular may be roughly constant under stronger and weaker intellectual-property
regimes, thereby implying a complete indifference result, the distribution of innovation
projects among incremental and radical projects may be substantially different. In that
case, “IP matters”—not only as a distributive instrument for allocating innovation rents
but, indirectly, as an incentive instrument for driving innovation investment by entities
that are inherently best-suited to undertake the highest-risk types of research projects.
Even if there is little to no change in output under a weak or strong intellectual-property
regime, the average distance of each “inventive step” (or to use some patent-law
vocabulary, the average degree of nonobviousness) is likely to be smallest under a weak
intellectual-property regime and largest under a strong intellectual-property regime. If
that is the case (and we do not yet have sufficient information to make a robust
determination), then more or less intellectual property certainly does matter at least some
of the time in some markets, even if (or more precisely, only if) intellectual property is
construed primarily in its traditional function as an incentive instrument.

Conclusion: Implications for Intellectual Property Reform

Is intellectual property trivial? For participants in the heated debates over the
socially desirable scope of intellectual property reform, that would appear to be a
rhetorical question hardly worthy of consideration. But it is certainly not a rhetorical
question in light of ample empirical evidence suggesting that, in most markets, greater or
lesser levels of intellectual-property protection may make little difference in regulating
innovative output, coupled with abundant evidence documenting the wide panoply of
alternative instruments by which to shield innovation returns. Hence, there is a sound
basis for the oft-suggested view that a large swath of technology and cultural markets are
likely to support robust levels of innovation investment with or without robust levels of
intellectual-property protection (provided it is additionally observed that firms use other
devices by which to regulate access).\footnote{The proviso is often dropped. For a fuller description of the extensive implications of that omission and a revised understanding of markets that apparently support intellectual production without intellectual property, see Barnett, \textit{Sharing}, supra note 5.} That \textit{positive} observation would seem to (and is often cited as) support for the \textit{normative} position that intellectual-property protections in most markets can be relaxed substantially with little effect on innovative output. The reasoning is simple: if firms can protect intellectual goods without intellectual property, then there would seem to be little if any social cost in substantially curtailing or even abolishing intellectual property altogether—to the contrary, \textit{with certainty} there would be a social gain if innovative output is unaffected while the social costs of the intellectual-property regime are eliminated. But that reasoning is \textit{too} simple: it ignores the (nontrivial!) possibility that \textit{the social costs of alternative cost-equivalent appropriation instruments, to which firms will necessarily migrate if intellectual-property coverage is reduced, may exceed the social costs of any lapsed intellectual property instruments.} That possibility is commonly ignored in the intellectual property context, where even economically-informed commentators regularly advocate substantially limiting or withdrawing intellectual-property protections because markets can and do use other instruments in order to extract sufficient innovation returns.

This typical argument suffers from the blindness of a static analysis: it assumes that reductions in intellectual-property coverage will inherently expand the public domain of freely-accessible knowledge and thereby lower entry costs into the relevant market, albeit at the expense of reduced innovation gains. But normative analysis of intellectual-property coverage must be dynamic (and complex) if it is to be realistic: that is, it must anticipate that any downward adjustment in intellectual-property coverage will trigger a variety of possible market responses that may neutralize or even reverse it, resulting in (i) no net change in access costs, (ii) a net reduction in access costs or (iii) in the most perverse case, even a net increase in access costs coupled with a reduction in innovation gains. Even in the most benevolent scenario, where the market simply substitutes substantially cost-equivalent appropriation instruments for state-provided legal entitlements such that access costs and innovation incentives are held constant, there is a plausible case for a net social loss. That is because the private appropriation technologies that support this invariance result may be available at relatively lower cost to strongly-
integrated large-firm organizations and relatively higher cost to weakly-integrated small-firm organizations. Hence, even if weaker or stronger levels of intellectual-property protection have little effect on access costs and innovation gains, thereby resulting in substantially-equivalent levels of innovative output, any relaxation of intellectual-property rights may still result in a distributive loss insofar as the costs of making recourse to alternative instruments vary across firm types.

This discussion is perhaps most helpful in identifying one of the most salient questions for future policy analysis: do we care about distributive losses that transfer rents from some firms (usually, smaller weakly-integrated entities) to other firms (usually, larger strongly-integrated entities) as a function of different levels of intellectual-property protection? This question might be rephrased even more simply as follows: *do the distributive effects generated by adjustments in intellectual-property coverage raise any efficiency implications?* 52 Certainly some rent transfers are socially indifferent: for example, there is no obvious distributive ground for favoring record labels over hardware manufacturers or concert promoters in the music business, or *vice versa*. So the transfer of rents within the music business as a result of the erosion of copyright is a positive observation with no normative implications. But *some* rent transfers may raise the prospect of considerable social losses from an efficiency point of view, which may in turn identify a determinant policy response. In particular, if weak levels of intellectual-property protection drive firms to shield legally-unprotected spillovers by accumulating a broad set of complementary assets and competencies, whether through external acquisition or internal development, so as to achieve high levels of vertical and horizontal integration, then it will inherently raise substantially the “minimum cost” of entering the market, thereby limiting entry threats, enhancing incumbents’ pricing power, and distorting incumbent firms’ choices of organizational forms and transactional designs.

And if there is ground to tie integrated forms of business organization and high levels of market concentration with depressed incentives to make innovation investments generally

52 I leave open the precise definition of efficiency—whether the narrow definition of allocative efficiency, the broader definition of productive efficiency or the even broader definition of innovative efficiency—for purposes of assessing the social costs of distributive losses attendant to rent transfers induced by adjustments in intellectual-property coverage. For discussions of these various distinctions, see Joseph F. Brodley, *The Economic Goals of Antitrust: Efficiency, Consumer Welfare, and Technological Progress*, 62 N.Y.U. L. Rev. 1020, 1032-34 (1987); F. M. Scherer, *Antitrust, Efficiency and Progress*, 62 N.Y.U. L. Rev. 998, 998-1002 (1987).
or depressed incentives to make certain kinds of innovation investments, then the distributive losses from weak intellectual-property protection would plausibly yield substantial efficiency losses even if innovative output in general is largely unaffected.

The ultimate lesson for intellectual property policy can be stated most precisely as follows. It is difficult to anticipate the effects of adjustments in intellectual-property coverage without undertaking a dynamic analysis that anticipates firms’ differential capacities to exploit alternative instruments, which may allow some firms to replicate or even exceed appropriation capacities provided by intellectual-property entitlements. That analysis requires information as to three crucial factors: (i) the distribution of costs of coverage across intellectual property and alternative appropriation technologies, (ii) the distribution of the costs of alternative appropriation technologies across firm types and, in some cases, (iii) the distribution of the units of coverage across alternative appropriation technologies. Simple correlations between “more IP” and more output and less access, or “less IP” and less output and more access are useful for some analytical purposes in scholarly discussion and strategic purposes in political rhetoric. But, for purposes of practically-oriented policy analysis, these correlations are often unsupported by empirical conditions on the ground and are therefore unlikely to provide a reliable framework by which to anticipate the complex and sometimes perverse effects of proposed changes in intellectual-property coverage. Hence, the familiar “anti-monopoly” tendency to favor relaxed intellectual-property protections in order to “free the commons” can inadvertently advance concentrated market conditions where entrenched incumbents are protected by legally-bolstered barriers to entry by “disruptive” small-firm competitors. Serious thought should be given to whether the weak patent regime that prevailed in the United States during the post-war decades through the early 1980s supported conglomerate forms of industrial organization in industries that are often viewed as having suffered from low entry rates, limited price competition, and conservative tendencies of technological innovation. And serious thought should be given to whether the relatively strong patent regime that has prevailed since the early 1980s has supported the development in some of the most innovative technology sectors (most notably, biotechnology and semiconductors) of a variety of cooperative structures that exploit the differential competencies of largely-unintegrated firms, including in particular smaller

http://law.bepress.com/usclwps-lewps/art105
firms that have strong design competencies but lack manufacturing or distribution capacities. If there is a strong relationship between intellectual-property protection and firms’ choices of organizational forms and transactional structures, and if firms’ choices of industrial organization or transactional structures in turn govern the rate and/or direction of firms’ innovation investments in a manner that is socially relevant, then the social costs of weak intellectual-property protection would be great even in the otherwise neutral case where innovative output is largely insensitive to stronger or weaker levels of intellectual-property protection. So intellectual property might very well matter but by a circuitous route that can not be anticipated by straightforward application of the standard incentives/access tradeoff.

Inquiry into these tantalizing questions holds the promise of a powerful intellectual marriage between the incentive framework that characterizes the intellectual-property literature and the economizing framework that characterizes the transaction-cost economics literature. If intellectual property plays a meaningful role as an incentive instrument, our best current understanding suggests that it can only do so if there is ground to believe that supporting innovation investment within weakly-integrated forms of organization yields efficiency gains by bolstering those entities’ potentially unique competencies at certain stages in the innovation process. If there is evidence to support this view (and preliminarily, there is some support in a number of industries), then intellectual property does matter—as an incentive instrument that regulates firms’ innovation behavior indirectly at the level of organizational and transactional design. If not, then it really is largely trivial, in which case it reduces to a socially-indifferent distributive instrument for slicing up the economic pie created by innovation investments, a “merely” political question as to which any socially-interested normative analysis may have little to add.