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Rents, Dissipation, and Lost Treasures with N
Parties

Giuseppe Dari-Mattiacci, Eric Langlais, and Francesco Parisi

Abstract

The rent-seeking literature is unanimous on the fact that, in a rent-seeking con-
text, the rent dissipation increases with the number of potential participants. In
this paper we analyze the participants’ choice to enter the game and their levels
of efforts. We show that the usual claim - that the total dissipation approaches the
entire value of the rent - applies only when participants are relatively weak. In
the presence of strong competitors, the total dissipation actually decreases, since
participation in the game is less frequent. We also consider the impact of competi-
tors’ exit option, distinguishing between redistributive rent-seeking and produc-
tive rent-seeking situations. In redistributive rent-seeking, no social loss results
when all competitors exit the race. In productive rent-seeking, instead, lack of
participation creates a social loss (the lost treasure effect), since valuable rents
are left unexploited. We further show that in N-party rent-seeking contests, the
lost-treasure effect perfectly counterbalances the reduction in rent dissipation due
to competitors’ exit. Hence, unlike redistributive rent-seeking, in productive rent-
seeking the total social loss remains equal to the entire rent even when parties
grow stronger, irrespective of their number.
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tors, the total dissipation actually decreases, since participation in the
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results when all competitors exit the race. In productive rent-seeking,
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1 Introduction

When resources are not �or not yet �subject to clear ownership, private parties
tend to expend e¤ort in order to gain control over them. Settlers occupy land in
newly discovered regions, producers strive for monopoly power, pharmaceutical
enterprises rush for patents, and researchers compete for new scienti�c �ndings.
The rent-seeking literature initiated by Tullock (1967), Krueger (1974), and
Posner (1975) has long analyzed these types of problems, concluding that they
may result in expenditures that exceed the socially optimal levels. Critics have
reproached the proponents of rent-seeking models for bringing about too nega-
tive a view of reality. Proponents of alternative views argue that rent-seeking
models neglect the fact that rent dissipation is often the by-product of valuable
competition in socially bene�cial activities, such as scienti�c or technological
research.1

This debate led to the important distinction between forms of redistributive
rent-seeking, aimed at the reallocation or appropriation of a rent, and produc-
tive rent-seeking, where the competitors�expenditures are instrumental to the
discovery or creation of new resources.2 In this study, we examine both re-
distributive and productive rent-seeking games among N identical parties and
challenge a rather uncontested result in the literature, namely, that in a rent-
seeking game the total rent dissipation increases with the number of contestants.
We show that rent dissipation increases with the number of potential par-

ticipants �and ultimately approaches the entire value of the rent �only when
participants are relatively weak (in a sense that will be speci�ed in the follow-
ing). In contrast, when parties are relatively strong, an increase in the number
of contestants actually leads to a reduction in the total rent dissipation.
Our analysis shows that competitions involving weak players lead to larger

dissipation because weak contestants always play the game. Strong competitors,
instead, randomize their participation in the game and an increase in the number
of players induces them to play increasingly less often. This crowding-out e¤ect
leads to a reduction in the rent dissipation.
It should be noted that when the probability of participation is lower than

1, it is possible that no party enters the game and thus that the rent will remain
unexploited. This occurrence does not amount to a social loss in redistributive
rent-seeking, but it does so when rent-seeking e¤orts are conducive to a socially
productive outcome. In these cases, the unexploited rent amounts to a social
loss (which we call the "lost treasure" e¤ect) that ought to be added to the
rent dissipation. This paper shows that the total social loss so calculated is
constantly equal to the entire value of the rent, irrespective of the number of
participants.
In the following we put the current study in the context of the existing

literature. Section 2 provides the formal analysis; some of the proofs are in the
appendix. Section 3 concludes discussing potential extensions of our results and
implications of our �ndings for social policy and R&D activities.

1See for example the introduction to Barzel (1997).
2See Dari-Mattiacci and Parisi (forthcoming) discussing this point in a 2-party game.
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1.1 Rent Dissipation and Lost Treasures in Tullock�s Para-
dox

Tullock�s (1967) seminal paper on how rational parties expend resources in the
pursuit of rents provided the basis for the understanding of how the degree of
rent dissipation varies with the value of the prize, the number of contestants and
the allocation rules. The early extensions of Tullock�s (1967) insight by Becker
(1968), Krueger (1974), Posner (1975), Demsetz (1976), Bhagwati (1982), and
others hypothesized a full-dissipation equilibrium, similar to that generated by
competitive markets.3 In a long-run equilibrium, rents would be competed away
by the contestants and rent-seeking investments would thus yield the normal
market rate of return.
In his seminal work on �E¢ cient Rent-seeking,�Tullock (1980) developed

the insight that the marginal return to rent-seeking expenditures in�uences the
total expenditures on rent-seeking activity. Tullock�s (1980) results shook the
conventional wisdom in the literature, identifying conditions under which com-
petitive rent-seeking could lead to under- or over-dissipation. Tullock�s analysis
showed that, when investments in rent-seeking exhibit increasing returns, aggre-
gate expenditures could exceed the contested prize. This could lead to negative
expected returns for the players, making it rational for players to exit the game.
But, if no player entered the rent-seeking contest, the prize would remain un-
claimed.4 Hence, Tullock�s well-known paradox.5

In a recent paper, two of us tackled Tullock�s paradox identifying the pos-
sibility that the parties adopted mixed participation strategies (Dari-Mattiacci
and Parisi, forthcoming). The analysis considered the case of two (identical)
players facing varying returns to e¤ort, and showed that Tullock�s paradox orig-
inates from a con�ict between the decision whether or not to play and the
optimal strategy when playing. The analysis di¤ers from previous studies6 by
giving players the opportunity to choose simultaneously and independently (1)

3Most notably, Posner�s (1975) full dissipation hypothesis became popular in the empirical
literature and also had a strong appeal in the theoretical one. For a survey of the literature see
Buchanan, Tollison, and Tullock, (1980), Congleton and Tollison (1995), Lockard and Tullock
(2000), Rowley, Tollison, and Tullock (1988), and Tollison (2003).

4See also Rowley (1991) on the importance of this problem for the development of the idea
of rent-seeking.

5With rational expectations, parties would realize that the rent-seeking contest would
generate negative expected returns, and would consequently choose to exit the contest, if
given an opportunity to do so. Tullock (1980) points out the paradoxical result that if no one
enters the contest, any one contestant that enters the race would win the prize, regardless of the
e¤ort level he chooses. Therefore there is an incentive to enter, destabilizing the hypothesized
no-participation equilibrium. Tullock thus concluded that the existence of negative expected
returns when all parties participate cannot be used to infer that the equilibrium level of
participation will always be zero.

6Baye, Kovenock, and de Vries (1994) introduced mixed strategies with varying levels of
e¤ort, but they obtain an explicit solution only in the discrete case. Hillman and Samet (1987)
analyzed a slightly di¤erent version of the rent-seeking paradox, in which the rent is entirely
adjudicated to the highest bidder as in an all-pay auction. In Pérez-Castrillo and Verdier
(1992), the randomization is attained over the number of players that enter the game. Other
solutions to Tullock�s paradox have been sought by transforming the game into a dynamic one
and by introducing asymmetries between the players.
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whether to play and (2) how much to invest in rent-seeking activities.
In this paper, we build on this framework of analysis in order to discuss the

problems of participation and optimal e¤ort when N parties compete for a rent
and face varying returns to rent-seeking e¤orts. We study how the expected
expenditures in rent-seeking and the expected value of the lost treasure vary
with the number of contestants and the marginal return to rent-seeking e¤orts.

1.2 Rent Dissipation and Lost Treasures with Multiple
Rent-Seekers and Varying Returns to E¤ort

When parties randomize their strategies, it could happen that more than one
party decides to play. Although none of the parties would rationally spend more
than the full rent, the total expenditures of all parties could exceed the rent �a
result that con�rms Tullock�s claim that increasing returns to investment may
induce over-dissipation. With mixed strategies, the opposite may also be true.
With random participation, available value may remain unexploited when no
player enters the rent-seeking contest. In these situations the analysis of the
social cost of rent-seeking should account for the possibility that valuable rents
may remain unexploited. We refer to this possible loss as the �lost-treasure
e¤ect.�
When parties are endowed with a weakly productive technology of e¤ort,

either with decreasing or constant returns to e¤ort, they always enter the game
and never randomize their strategy. In contrast, when they have increasing
returns to e¤ort, the parties�choices depend both on the marginal return to the
individual e¤ort and on the number of potential contestants.
The relative strength of the parties is measured as a function of these two

variables. In both redistributive and productive rent-seeking games, when par-
ties are relatively weak (that is, when their marginal return to e¤ort is low
relative to the number of parties) they always participate in the contest and the
dissipation increases with the number of participants, ultimately approaching
the whole value of the rent. When parties are relatively strong (that is, when
their marginal return to e¤ort is high relative to the number of parties), it is
never advantageous for parties to invest in total more than the rent. In fact,
when their strength increases, they tend to invest more in the contest, but also
tend to participate less often.
As a result, when parties are stronger, the dissipation increases steadily

up to the point at which parties expend in total as much as the rent and it
becomes convenient not always to participate. After this point, in redistributive
rent-seeking activities the dissipation decreases, while in productive rent-seeking
activities it remains equal to the rent. This is because, in productive rent-seeking
the reduction in the parties expected expenditures is perfectly counterbalanced
by the expected value of the rent, which remains unexploited when no party
takes part in the game.
A similar analysis applies with respect to changes in the number of potential

participants. An increase in the number of potential participants reduces the
incentive for each party to enter the race. This has di¤erent welfare implications
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in the two cases of redistributive and productive rent-seeking. In the case of
redistributive rent-seeking, the total dissipation of socially valuable resources
corresponds to the sum of the parties�investments in rent-seeking activities. An
increase in the number of potential participants, by reducing the incentive for
each party to enter the race, may lead to a bene�cial reduction in the dissipation
of rents (i.e., a lower rent-dissipation e¤ect).
In the case of productive rent-seeking, the parties compete for rents that

are associated with socially valuable activities and hence a social loss arises not
only from the parties�rent-seeking expenditures (i.e., the rent-dissipation e¤ect),
but also from the lack of exploitation of available rent (i.e., the lost-treasure
e¤ect). Here, an increase in the number of potential participants produces two
countervailing e¤ects: a reduction in the rent-dissipation e¤ect and an increase
in the lost-treasure e¤ect. We show that the rent-dissipation e¤ect is negatively
related to the number of contenders, while the lost-treasure e¤ect is positively
related to it. Interestingly, the sum of the rent-dissipation e¤ect and the lost-
treasure e¤ect does not depend on the number of contenders and equals the full
value of the rent.

2 Analysis

2.1 The basic model

We consider N � 2 identical, risk-neutral individuals who may participate in
a simultaneous contest with a prize equal to 1.7 Each individual indexed by i
chooses between two actions: either to enter the game with an e¤ort Xi 2 [0; 1]
or not to enter the game at all. Each individual is allowed to randomize over his
or her pure strategies �that is, he or she may enter the game with probability
pi and not enter the game with probability 1� pi.
Parties act as to maximize their own individual expected payo¤s from the

game, conditional to the behavior of the others. In order to calculate the ex-
pected payo¤ of each individual, it is necessary to specify the sharing rule for
the prize and the way in which each participant anticipates the moves of the
others.
To begin with, if an individual enters the game, he or she is awarded a

share of the prize equal to Xr
i

Xr
i +

P
j 6=iX

r
j
. This share depends on the individual�s

investment Xi, together with the number of actual opponents who have entered
the game and their respective e¤ort Xj . It can be interpreted either as a real
sharing of the prize or as a probability of winning the entire prize. Since parties
are risk-neutral, both interpretations are formally equivalent. It is easy to see
that the exponent r > 0 (the same for all the individuals) represents, as it is
usual in the literature, an index of the individuals�productivity of e¤ort, whose

7The assumption that the prize is equal to 1 is a choice made for merely methodological
convenience and it is equivalent to measuring the parties�investments Xi as a fraction of the
value of the prize, rather than in absolute terms, as it is more common in the literature. In
this way it is easier to evaluate the rent dissipation.
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value determines the value of the individual�s marginal return to e¤ort.8 Finally,
if no party participates the prize is not awarded.
In addition, and as it is usual when individuals play Nash strategies, we use

the fact that the strategy choice of each individual is associated to a reasonable
belief concerning the other players�strategies. There is an obvious way to for-
malize these beliefs: since no player can in�uence the decision of the others but
takes them as given, and since the problem is symmetric, it is reasonable for
each player to expect all of the others to play the same strategy. That is, we
can consider that the opponents to player i enter the game with the same prob-
ability pj = q, and exert the same e¤ort Xj = Y , for any j 6= i. Consequently,
we can rewrite the share as Xr

i

Xr
i +jY

r , where j is the number of opponents who
have e¤ectively entered the game together with player i. As a result, for each
individual i the number of opponents who may be expected to enter the game
is a random variable n distributed according to a Binomial law with:

B(j;N � 1; q) �
�
N � 1
j

�
qj(1� q)N�1�j

=
(N � 1)!

j!(N � 1� j)!q
j(1� q)N�1�j

= Pr(n = j)

corresponding to the probability that the number of opponents n playing
(Y; q) be equal to 0 � j � N � 1.9
Thus, the expected payo¤ of each individual i may be now written as follows:

Ui(Xi; pi;Y; q) = pi

N�1X
j=0

Pr(n = j)

�
Xr
i

Xr
i + jY

r
�Xi

�
+ (1� pi) 0 (1)

and the individual e¢ cient mixed strategy in the rent seeking game is de�ned
as the solution to the maximization of the expected payo¤ in Exp. (1) over pi
and Xi. We have the following �rst order conditions:10

8More speci�cally, Xr
i is the total productivity or return to each individual�s e¤ort Xi. It

is easy to see that, if r > 1, we have increasing marginal return to e¤ort; if r < 1, we have
decreasing marginal return to e¤ort; if r = 1, e¤ort has a constant marginal return. This
interpretation was initially proposed by Tullock (1980).

9To illustrate, suppose that there are 5 parties. From the perspective of party 1, the
probability that only parties 2, 3, and 4 participate and party 5 does not is given by q3(1�q)1.
The term (N�1)!

j!(N�1�j)! depicts instead the number of possible combinations of j participants in

the pool of N�1 potential opponents. Going back to the example, the are (5�1)!
3!(5�1�3)! =

4!
3!1!

=

4 possible combinations of 3 opponents. In fact, we could have the following combinations of
3 opponents to party 1: (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5). For all of these combinations
the probability of participation is always q3(1 � q)1; thus, we need to take this probability
into account 4 times. This exercise needs then to be repeated for any number j of potential
opponents from 0 to N � 1.
10That the solution is internal follows from the proof of proposition 1 given in the appendix.
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@Ui
@pi

(Xi; pi;Y; q) =
N�1X
j=0

Pr(n = j)

�
Xr
i

Xr
i + jY

r

�
�Xi = 0 (2)

and

@Ui
@Xi

(Xi; pi;Y; q) = pi

24N�1X
j=0

Pr(n = j)

 
jrXr�1

i Y r

(Xr
i + jY

r)
2

!
� 1

35 = 0 (3)

Exp. (2) yields that the expected payo¤ from participating in the game must
be equal to 0, as it is the expected payo¤ of not entering the game. This is a
standard condition for mixed strategies, stating that the opponents enter the
game with such a probability 0 < q < 1 and an e¤ort Y > 0 that make party i
indi¤erent between entering and not entering the game.
Exp. (3) simply states that the marginal increase in the expected share in

the prize must equal the marginal cost of e¤ort. This is also a usual condition,
implying that the individually e¢ cient level of e¤ort when participating is such
that a player weighs an increase in his expected return to e¤ort against an
increase in his cost of e¤ort.

2.2 Equilibrium

Let us focus on the Nash equilibrium of this rent seeking game. With perfectly
identical players, it is natural to consider the case of a symmetrical Nash equi-
librium, such that Y = Xi � X, and q = pi � p. In this case, Exp. (2) and (3)
respectively become:

X =
N�1X
j=0

Pr(n = j)

�
1

1 + j

�
(4)

X = r
N�1X
j=0

Pr(n = j)

"
j

(1 + j)
2

#
(5)

We will now study the characteristics and the conditions of existence of this
Nash equilibrium. The main results are summarized in the following proposition:

Proposition 1 i) If r > N
N�1 , the unique symmetrical Nash equilibrium is such

that the N potential participants enter with a strictly positive probability p less
than 1 and a strictly positive e¤ort X, which solve (4) and (5). ii) If r � N

N�1 ,
the unique symmetrical Nash equilibrium is such that the N parties enter with a
probability equal to 1 and exert e¤ort X = N�1

N2 r.

The formal proof is given in the appendix. Proposition 1 yields that the
individuals�choice between pure and mixed strategies only depends on the value
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of the index r (describing the marginal productivity of e¤ort) relative to the
number of parties N . De�ning as the strength factor of a competitor the term
r � N

N�1 , we will call �strong�players those with a positive strength factor (r >
N
N�1 , requiring for example high returns to e¤ort and/or many competitors),
and �weak�players those with a negative (or zero) strength factor (r � N

N�1 ; for
example low returns to e¤ort and/or few competitors).

In proposition 1, it is shown that for weak competitors
�
r � N

N�1

�
the nat-

ural way to play the game is to adopt pure strategies, that is, it is optimal for all
of the parties always to enter the game. On the contrary, for strong competitors�
r > N

N�1

�
, it is rational to play mixed strategies and enter the game with a

probability lower than 1.11 Thus, loosely speaking, proposition 1 establishes
that the rent-seeking contest is rendered less appealing for each contestant by
an increase in the number of potential competitors (which implies a smaller
share or probability to succeed) and/or by an increase in the players�return to
e¤ort (larger equilibrium expenditures). While relatively weak competitors are
always ready to enter the contest, relatively strong ones prefer to con�ne their
participation rate.
Figure 1 shows that the threshold level of r̂ = N

N�1 decreases when the num-
ber of parties increases, and asymptotically approaches 1 as N tends towards
in�nity.

INSERT FIGURE 1

This means that parties ought to be considered strong competitors at lower
levels of r as N increases. In the next two paragraphs we separately discuss
the case of weak competitors and the case of strong competitors and investigate
the properties of the equilibrium behavior of the parties through a comparative
statics analysis.

2.3 Weak parties play pure strategies

We have seen that when parties are weak competitors
�
r � N

N�1

�
they �nd it

always convenient to participate in the game, p = 1, with a positive e¤ort level,
X = N�1

N2 r;
12 which is increasing in the return to e¤ort r

�
@X
@r =

N�1
N2 > 0

�
, up

to the point where the threshold r̂ = N
N�1 is reached, for which the e¤ort attains

the level X̂ = 1
N . On the other hand, the e¤ort is decreasing in the number of

parties N (since N�1
N2 is decreasing in N). In pure strategy, the payo¤ of each

participant is equal to:

11 It is easy to see that in this case, we also have r > N
N�1 > 1, that is, strong competitors

necessarily have increasing marginal returns to e¤ort.
12The level of e¤ort of an individual playing pure strategies maximizes the payo¤

Ui(Xi; Y ) =
Xr
i

Xr
i +(N�1)Y r � Xi, which is given by substituting p = q = 1 in (1), since

everyone participates in the game in equilibrium. This result is consistent with the previous
literature. See Tullock (1980, p. 146).
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U (X; 1;X; 1) =
1

N

�
1� r

�
N � 1
N

��
which is non negative when r � N

N�1 . It can be easily shown that the
individual payo¤ U decreases both in r and N .

2.4 Strong parties play mixed strategies

If parties are strong competitors
�
r > N

N�1

�
, playing pure strategies would yield

a payo¤ lower than 0 for each party. Tullock�s paradox arises precisely from this
occurrence. As shown in Dari-Mattiacci and Parisi (forthcoming) for the case
of two symmetric parties, it is thus optimal for parties to randomize over their
strategies and enter the game with a probability that is positive but lower than
1. The same result arises also in the case of N players: each party enters
the game with a probability that makes the other parties indi¤erent between
playing and not playing, which implies that the equilibrium expected payo¤ for
each participant is equal to 0, as it is the payo¤ from not entering the game.
The study of the comparative statics13 shows that when the return to e¤ort

increases, the equilibrium value of the probability of participation in the game

decreases
�
@p
@r < 0

�
, while the equilibrium level of e¤ort increases

�
@X
@r > 0

�
.14

The intuition behind this result can be easily explained as follows. A higher
return to e¤ort induces each party to exert a higher level of e¤ort in order to
retain a larger share of the prize. However, when every party invests more in the
game, their equilibrium shares in the prize remain constant, since the prize is
equally shared among parties who make equal investments. Thus, they all bear
a higher cost of e¤ort which is not compensated by an increase in their share
and hence results in a decrease in their payo¤.15 As a result, since the higher
the productivity of e¤ort, the higher the risk of receiving a negative payo¤,
parties tend to compensate an increase in the number of parties by reducing
their probability of participation.
On the contrary, when the number of players increases,16 both the proba-

bility of playing and the e¤ort level of each party decrease. This is due to the
fact that an increase in the number of parties makes the game less attractive, as
each party faces the possibility to have to share the prize with a larger number
of opponents. Thus, the greater the number of parties, the greater the individ-
ual risk associated with participation in the contest. To compensate, all parties
reduce both their probability of entering, and their levels of e¤orts.

13See the appendix.
14This implies, as it is worth noticing, that playing mixed strategies gives an incentive to

choose a higher e¤ort than when playing pure strategies.
15Notice that the equilibrium value of the share in the prize is Xr

Xr+jXr =
1

1+j
, where j is

the number of actual participants in the game. Hence, in equilibrium, when each participant
exerts the same level of e¤ort, the prize is shared equally among them. But, the payo¤ in the
event of j parties entering the game is 1

1+j
�X, and clearly decreases if X increases.

16Recall that N is a discrete variable.
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INSERT FIGURE 2

3 The social loss of rent dissipation and lost
treasure

In this Section, we consider the two cases of rent-seeking activities which have
been exempli�ed in the literature: namely, redistributive and productive rent-
seeking. The social losses associated to each of them are quite di¤erent. Re-
distributive rent-seeking is aimed at the reallocation or appropriation of a rent.
Therefore, the social loss simply amounts to the total dissipation D, that is, the
aggregate value of the resources invested by the parties.
In productive rent-seeking, instead, the competitors�expenditures are instru-

mental to the discovery or creation of new resources. For simplicity, we assume
that the social value of the treasure is the same as its private value for the par-
ties, which we have normalized to 1. In these cases, there is a second source of
social loss that should be added to the rent dissipation D. When parties play
mixed strategies, there is a positive probability that no party participates in the
game, and thus, that the treasure will remain undiscovered. This lost treasure
T is to be added to D in the calculus of the social loss, which becomes equal to
D + T .
The actual measure of the social loss in the two cases depends on whether

parties play pure strategies (the case of relatively weak contestants) or mixed
strategies (the case of relatively strong contestants), and thus depends on the
return to investment in e¤ort, r, and on the number of parties, N .

3.1 The social loss with weak parties

When parties are relatively weak
�
r � N

N�1

�
expected returns from rent-seeking

are positive. Thus, parties always take part in the game. The total amount of
resources dissipated in a rent-seeking activity is thus equal to the sum of the
parties�e¤orts. Since parties always play, the treasure will always be found and
hence the social loss of productive rent-seeking is the same as the social loss of
rent seeking. Therefore, recalling that the individual level of e¤ort isX = N�1

N2 r,
we can write the social loss of redistributive and productive rent-seeking as a
function of r and N , as follows:

D(r;N) = NX =
N � 1
N

r (6)

It is easy to see that D is increasing in r
�
@D
@r (r;N) =

N�1
N > 0

�
, and increas-

ing in N (for N > 2, the term N�1
N is bounded from above by 1 and increases

with N); moreover, it entails full dissipation for r = N
N�1 . It is remarkable

that, although the individual levels of e¤orts drop when the number of parties
increases, the social loss still increases as an e¤ect of more parties participating
in the game, but it never overcomes the value of the rent.
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3.2 The social loss with strong parties

When the rent-seeking contest involves relatively strong parties
�
r > N

N�1

�
,

the risk of over-dissipation induces them to participate in the game with a
probability lower than 1. Therefore, since the total number of participants is
described by a random variable with a binomial distribution, the ex ante value
of the rent dissipation due to the parties�e¤orts is given by the mean value of
the number of participants (which is equal to Np) times the individual level of
e¤ort (X): D (r;N) = NpX.17 In order to analyze the impact of changes in r
or N , let us rewrite the rent dissipation as follows:18

D(r;N) = 1� (1� p)N

In redistributive rent-seeking activities, the social loss is only equal to the
dissipation. In productive rent-seeking activities, instead, since parties only play
with a probability lower than 1, it is possible that treasures will not be found,
as it may happen that no party enters the game. This "lost treasure" loss may
be written as:

T (r;N) = (1� p)N

In other words, the value of the dissipation is equal to the total probability
of participation, while the lost treasure is equal to the probability that the game
is not played. Thus, it is easy to see that the sum of the rent dissipation and
the lost treasure is always equal to the value of the prize, whatever the level of
return to e¤ort r or the number of parties N :

D(r;N) + T (r;N) = 1

From this result it is easy to calculate how rent dissipation and lost treasure
vary when the parties�return to e¤ort and the number of competitors increase.19

Regarding variations in the return to e¤ort, we have already seen that parties
tend to play less often when their return to e¤ort increases. Thus, it is obvious

17As for the previous case where weak parties do not randomize, the ex ante dissipation is
still the (expected) value of the total rent dissipation including the random participation of the
N parties; thus, by de�nition we have: D(r;N) =

PN
j=1 Pr(n = j)jX, where

PN
j=1 Pr(n =

j)j = Np:
18Using (4), we have:

D(r;N) = Np
PN
j=0

�N�1
j

�
pj(1� p)N�j

�
1

1+j

�
=
PN�1
j=0

N(N�1)!
(j+1)j!(N�(j+1))!p

j+1(1� p)N�1�j

=
PN
j=1

�N
j

�
pj(1� p)N�j

= 1� (1� p)N
19 It is worth noticing that all the e¤ects thereafter are driven by the fact that the equilibrium

values of both dissipation and lost treasure depend only on the equilibrium value of the
probability with which the parties enter the game - and not on their levels of e¤ort.
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that the lost treasure will increase as a result: @T@r (r;N) > 0. Consequently the
value of the dissipation must decrease: @D@r (r;N) < 0.
Concerning the impact of variations in the number of players, we have seen

that the probability of participation decreases when the number of parties in-
creases, even if there are more parties who could eventually participate. There-
fore, also in this case, the lost treasure increases, and thus symmetrically the
dissipation decreases.

INSERT FIGURE 3

4 Conclusions

In this paper, we consider an important aspect of Tullock�s (1980) rent-seeking
paradox, generating results that run contrary to an established consensus in the
rent-seeking literature. We show an interesting relationship between number of
contestants, returns to rent-seeking investments, and total rent dissipation when
parties have an exit option and are allowed to undertake mixed participation
strategies.
Rent dissipation increases with the number of parties and with returns to

rent-seeking e¤orts up to the point at which full dissipation occurs. At that
point the social cost of rent-seeking activities equals the value of the rent. In-
terestingly, total expenditures in rent-seeking begin to decline after such point,
as the number of parties and/or the returns to e¤ort increase, because parties
will start using the exit option undertaking mixed participation strategies.
We considered the impact of competitors�mixed participation strategies in

the di¤erent context of redistributive and productive rent-seeking games among
N parties. We showed that, although rent dissipation increases with the number
of potential participants and approaches the entire value of the rent, when par-
ticipants are relatively weak, an increase in the number of contestants actually
leads to a reduction in the total dissipation of rent when players are relatively
strong.
When the number of potential contestants and/or the returns to rent-seeking

e¤ort increase, parties undertaking mixed-participation strategies would play
less often, although they would increase their expenditures when choosing to
participate. In this case, the random combination of mixed participation strate-
gies may lead to situations where no player enters the contest. Here the sought-
after rent would remain unexploited, with a lost-treasure e¤ect that may increase
the social loss occasioned by rent-dissipation.
From a welfare point of view, whether unexploited rents should be com-

puted among the social cost of rent-seeking obviously depends on the nature
of the situation. In redistributive rent-seeking situations, if no party partici-
pates, no redistribution would take place, but no social loss would result from
it. In productive rent-seeking situations, instead, lack of participation would
create a social loss (the "lost treasure" e¤ect), since valuable rents would be left
unexploited.
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We further showed that in N -party rent-seeking contests the lost-treasure
e¤ect perfectly counterbalances the reduction in rent dissipation due to com-
petitors�exit. By computing how the sum of the parties�expenditures and the
lost-treasure losses vary with a change in the number of players and returns to
e¤ort, we can in fact see that the sum of the expected values of these two costs
always amounts to the full value of the rent. These results allow us to consider
the overall impact of an increase in the number of potential contestants on the
aggregate social loss. Looking at the total social loss as the sum of rent-seeking
expenditures and lost-treasure losses, we see that in redistributive rent-seeking
games involving strong contestants, the total social loss always decreases as
the number of players increases. In productive rent-seeking situations the total
social loss remains instead equal to the rent even when parties grow stronger,
irrespective of their number.
These results have interesting policy implications. In redistributive games,

an increase in the number of potential contestants reduces each player�s incen-
tive to enter the contest, decreasing the deadweight loss from dissipation. It is
interesting to think that, by encouraging widespread participation in a redis-
tributive game, a reduction in the social waste can be promoted.20

In productive rent-seeking situations, a change in the number of contestants
alters the balance between the rent-dissipation and the lost-treasure components
of the social loss. An increase in the number of contestants would discourage
participation and leave potential value unexploited. Whenever the social value of
the treasure is higher than the private value (e.g., the case of a scienti�c discovery
that may have a social value greater than the private bene�t captured by the
discoverers), the social cost derived from the lost treasure would exceed the
social bene�t obtainable by a reduction in rent-dissipation. In these situations a
reduction in the number of competitors in the research race may lead to greater
opportunities for scienti�c discovery. These examples are illustrative of the
important implications of our results and of the need to extend the analysis to
additional settings with asymmetric rent-seeking parties and endogenous rent
values, in order to assess their real scope for public policy and institutional
design.
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Appendix

PROOF OF PROPOSITION 1

In the following, we provide a proof of the existence of pure versus mixed
strategies equilibria. Straightforward but cumbersome calculations are required
in order to prove the uniqueness of such equilibria. Thus, some of the details
are omitted here; a complete proof is available upon request.
To begin with, note �rst that, for any i, when q = 0 then:

(A:1) :
@Ui
@Xi

(Xi; pi;Y; q)jq=0 = �pi

(A:2) :
@Ui
@pi

(Xi; pi;Y; q)jq=0 = 1�Xi

while for q = 1 we obtain:

(A:3) :
@Ui
@Xi

(Xi; pi;Y; q)jq=1 =
rX�1

i (N � 1)
N2

� 1

(A:4) :
@Ui
@pi

(Xi; pi;Y; q)jq=1 =
1

N
�Xi

Now, assume that r � N
N�1 ; we can show that the pro�le where all players

choose
�
p = 1; X = rN�1N2

�
is Nash. In fact, if player i anticipates that the others

always enter with certainty
�
q = 1; Y = rN�1N2

�
, he has no incentive to deviate

since any strategy associated to a pi < 1 and a smaller e¤ort Xi � rN�1N2 by
condition (A.3) and (A.4) leads to:
dUi(Xi; pi;Y; q)j(q=1;Y=rN�1

N2 )
= 1

N

�
1� r

�
N�1
N

��
dpi � 0, since under r �

N
N�1 we have 1� r

�
N�1
N

�
� 0 and dpi < 0. Thus, deviating is not pro�table.

We now show that for r > N
N�1 a corner solution cannot be a Nash equilib-

rium. A pro�le of strategies where all players choose (p = 0; X = 0) cannot be
Nash: if player i anticipates that the others do not enter (q = 0,Y = 0), he has
an incentive to deviate, that is he may enter more frequently and undertake a
small positive e¤ort (i.e. there exist a pi > 0 and a 0 < Xi < 1) such that by
condition (A.1) and (A.2): dUi(Xi; pi;Y; q)j(q=0;Y=0) = dpi � pidXi > 0. Thus,
deviating is pro�table.
Likewise, a pro�le where all players choose (p = 1,X = rN�1N2 ) cannot

be Nash: if player i anticipates that the others always enter with certainty
(q = 1,Y = rN�1N2 ), he has an incentive to deviate and choose a strategy with
a lower pi < 1 and a higher e¤ort Xi > rN�1N2 . By conditions (A.3) and (A.4):
dUi(Xi; pi;Y; q)j(q=1;Y=rN�1

N2 )
= 1

N

�
1� r

�
N�1
N

��
dpi+0dXi =

1
N

�
1� r

�
N�1
N

��
dpi
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> 0, since, given r > N
N�1 , we always have

1
N

�
1� r

�
N�1
N

��
< 0 and dpi < 0.

Hence, deviating is pro�table.
Thus, any Nash equilibrium in mixed strategies must have X > rN�1N2 and

0 < p < 1 which satisfy (4) and (5). We now prove that conditions (4) and (5)
intersect at least once, implying the existence of at least one Nash equilibrium
satisfying (4)-(5). Consider �rst condition (4); it implies that if p = 0, then
X = 1, while if p = 1, then X = 1

N . Consider now condition (5); it implies that

if p = 0, then X = 0, while if p = 1, then X = r(N�1)
N2 > 1

N when r > N
N�1 ,

yielding that (4) and (5) intersect at least once.

Concerning the uniqueness of this Nash equilibrium, the complete proof of
the result requires that conditions (4)-(5) be rewritten. Since these alternative
expressions help us solve later on the comparative statics analysis, we brie�y
sketch these calculations in the following. Using the same calculations as those
introduced for the rent dissipation, it is easy to see that condition (4) may be
written as:

(A:5) : X =
1

Np

NX
j=1

�
N

j

�
pj(1� p)N�j

=
1

Np
(1� (1� p)N )

thus according to (A.5), 8p 2 [0; 1]:21

@X

@p
=

1

Np2
�
Np(1� p)N�1 + (1� p)N � 1

�
< 0

Secondly, it can be shown that the relationship between X and p correspond-
ing to condition (5) may be written as:

(A:6) : X =
r

Np

24 NX
j=1

�
N

j

�
pj(1� p)N�j

�
j � 1
j

�35
=

r

Np

24 NX
j=1

�
N

j

�
pj(1� p)N�j �

NX
j=1

�
N

j

�
pj(1� p)N�j 1

j

35
=

r

Np
(1� (1� p)N )� rH(p)

where H(p) is given by:22

21Notice that this implies that condition (4) exhibits a monotonous decreasing relationship
between X and p, in the interval [0; 1] for p:
22We are indebted to Bruno Lovat for this result.
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H(p) =

Z 0

1

(px+ (1� p))N�1Ln(x)dx

Notice also that, since

H 0(p) = (N � 1)
Z 0

1

(x� 1)(px+ (1� p))N�2Ln(x)dx

with x taking value on [0; 1], it is clear that H 0(p) < 0; which is used there-
after.
To illustrate the uniqueness of the Nash equilibrium, we performed several

simulations for the �rst order conditions (4) and (5), choosing several values for
r > N

N�1 and N . The following graphics plot the results of the simulations for
r = 5, setting di¤erent values for N 2 f3; 10; 100g.

INSERT FIGURE 4

It is evident that equations (4) and (5) display a unique intersection point,
thus suggesting that there exist a unique Nash equilibrium of the game.

COMPARATIVE STATICS FOR r

We will �rst prove that @p
@r < 0 and

@X
@r > 0. Totally di¤erentiating (4)-(5)

or equivalently (A.5)-(A.6) leads to the system:

(A:8) :
@X

@r
=
@p

@r

1

Np2
�
Np(1� p)N�1 + (1� p)N � 1

�
(A:9) :

@X

@r
= r

@p

@r

�
1

Np2
�
Np(1� p)N�1 + (1� p)N � 1

�
�H 0(p)

�
+

�
1

Np
(1� (1� p)N )�H(p)

�
where H(p) and H 0(p) < 0 have been previously de�ned in the proof of

proposition 1. Substituting (A.8) in (A.9), we obtain:

@p

@r
=

�
1
Np (1� (1� p)

N )�H(p)
�

(1� r)
�

1
Np2 (Np(1� p)N�1 + (1� p)N � 1)

�
+ rH 0(p)

< 0

The denominator is negative, while the numerator (which is equal to X=r
according to (A.6)) is positive: as a result @p@r < 0: Then, given (A.8), it is clear
that:

sign
@X

@r
= �sign@p

@r
> 0
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Now, we show that @T@r (r;N) = �
@D
@r (r;N) > 0:

Consider that T (r;N) = (1� p)N ; the impact of an increase in r on the lost
treasure is thus:

@T

@r
(r;N) = N(1� p)N�1

�
�@p
@r

�
> 0

Thus, by D(r;N) = 1 � T (r;N), an increase in r has a negative impact on
the rent dissipation: @D@r (r;N) � 0:

TABLE 1 - comparative statics for r (results for N = 3)

r X p D T

2 .4375 .75 .9843 .0157
3 .5622 .5321 .8975 .1025
4 .6408 .4170 .8019 .1981
5 .6955 .3439 .7175 .2825

COMPARATIVE STATICS FOR N

Since N is discrete, the analysis of its impacts is quite complex, making it
useful to reconsider the simulations already performed. Looking at �gure 4, it is
evident that as N increases the equilibrium values of p and X (the intersection
point of (4) and (5)) shifts down and to the left, implying a decrease in both p
and X.
On the other hand, a more informal argument may be helpful and su¢ cient

to describe the e¤ects on the equilibrium strategy. First, in proposition 1, we
have seen that there exists a higher bound for the e¤ort X associated with the
equilibrium in mixed strategy. This bound is N�1

N2 r the e¢ cient e¤ort when
players never randomize, which is decreasing in N . Thus, X cannot increase in
N .
Second, remember that for each participant, the number of his opponents is

distributed according to a Binomial law, with by de�nition a probability to face
j opponents equal to Pr(n = j) =

�
N�1
j

�
pj(1� p)N�1�j ; it can be shown that:

Pr(n > k) =
N�1X
j=k+1

�
N � 1
j

�
pj(1�p)N�1�j = (N � 1)!

k!(N � k � 2)!

Z p

0

tk(1�t)N�k�2dt

meaning that Pr(n > k), the cumulative probability that the number of par-
ties playing the game be higher than a threshold k, is monotonously increasing
in N . As a result, an increase in N means an increase in the risk borne by each
party (in the sense of the �rst stochastic dominance order) to share the constant
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prize with a greater number of opponents - the higher the number of players,

the smaller the individual share
�

1
1+j

�
. To compensate, each party reduces his

probability of participation. Thus, the equilibrium value of p decreases with N .

TABLE 2 - comparative statics for N (results for r = 2)

N 3 4 5 6 7 8 9 10 20 50 100

X .4375 .4154 .4040 .3970 .3923 .3889 .3863 .3843 .3757 .3710 .3694
p .75 .5837 .4753 .4000 .3453 .3036 .2708 .2443 .1235 .0496 .0248
D .9843 .9699 .9602 .9534 .9484 .9447 .9417 .9393 .9284 .9217 .9195
T .0157 .0301 .0398 .0466 .0516 .0553 .0583 .0607 .0716 .0783 .0805
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FIGURE 1: Parties’ strength as a function of r and N 
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FIGURE 2: Rent-seeking expenditure X and probability of participation p as a function of 

the number of contestants N (for any r) 
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FIGURE 3: Rent dissipation D and lost treasure T as a function of the number of 
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FIGURE 4: Simulation of the first order conditions (4) and (5) 

(Condition (4) is the monotonically decreasing curve in each plot) 
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